Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe (original) (raw)
Related papers
Population genetic structure of the malaria vector Anopheles nili in sub-Saharan Africa
Malaria Journal, 2010
Background Anopheles nili is a widespread efficient vector of human malaria parasites in the humid savannas and forested areas of sub-Saharan Africa. Understanding An. nili population structure and gene flow patterns could be useful for the development of locally-adapted vector control measures. Methods Polymorphism at eleven recently developed microsatelitte markers, and sequence variation in four genes within the 28s rDNA subunit (ITS2 and D3) and mtDNA (COII and ND4) were assessed to explore the level of genetic variability and differentiation among nine populations of An. nili from Senegal, Ivory Coast, Burkina Faso, Nigeria, Cameroon and the Democratic Republic of Congo (DRC). Results All microsatellite loci successfully amplified in all populations, showing high and very similar levels of genetic diversity in populations from West Africa and Cameroon (mean Rs = 8.10-8.88, mean He = 0.805-0.849) and much lower diversity in the Kenge population from DRC (mean Rs = 5.43, mean He = 0.594). Bayesian clustering analysis of microsatellite allelic frequencies revealed two main genetic clusters in the dataset. The first one included only the Kenge population and the second grouped together all other populations. High Fst estimates based on microsatellites (Fst > 0.118, P < 0.001) were observed in all comparisons between Kenge and all other populations. By contrast, low Fst estimates (Fst < 0.022, P < 0.05) were observed between populations within the second cluster. The correlation between genetic and geographic distances was weak and possibly obscured by demographic instability. Sequence variation in mtDNA genes matched these results, whereas low polymorphism in rDNA genes prevented detection of any population substructure at this geographical scale. Conclusion Overall, high genetic homogeneity of the An. nili gene pool was found across its distribution range in West and Central Africa, although demographic events probably resulted in a higher level of genetic isolation in the marginal population of Kenge (DRC). The role of the equatorial forest block as a barrier to gene flow and the implication of such findings for vector control are discussed.
Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi
2014
Background: Anopheles darlingi is the main malaria mosquito vector in the Amazonia region. In spite of being considered a riverine, forest-dwelling species, this mosquito is becoming more abundant in peri-urban areas, increasing malaria risk. This has been associated with human-driven environmental changes such as deforestation.
An Integrated Genetic Map of the African Human Malaria Vector Mosquito, Anopheles gambiae
Genetics, 1996
We present a genetic map based on microsatellite polymorphisms for the African human malaria vector, Anopheles gambiae. Polymorphisms in laboratory strains were detected for 89% of the tested microsatellite markers. Genotyping was performed for individual mosquitoes from 13 backcross families that included 679 progeny. Three linkage groups were identified, corresponding to the three chromosomes. We added 22 new markers to the existing X chromosome map, for a total of 46 microsatellite markers spanning a distance of 48.9 cM. The second chromosome has 57 and the third 28 microsatellite markers spanning a distance of 72.4 and 93.7 cM, respectively. The overall average distance between markers is 1.6 cM (or 1.1, 1.2, and 3.2 cM for the X, second, and third chromosomes, respectively). In addition to the 131 microsatellite markers, the current map also includes a biochemical selectable marker, Dieldrin resistance (Dl), on the second chromosome and five visible markers, pink-eye (p) and wh...
A microsatellite map of the African human malaria vector Anopheles funestus
The Journal of heredity
Microsatellite markers and chromosomal inversion polymorphisms are useful genetic markers for determining population structure in Anopheline mosquitoes. In Anopheles funestus (2N = 6), only chromosome arms 2R, 3R, and 3L are known to carry polymorphic inversions. The physical location of microsatellite markers with respect to polymorphic inversions is potentially important information for interpreting population genetic structure, yet none of the available marker sets have been physically mapped in this species. Accordingly, we mapped 32 polymorphic A. funestus microsatellite markers to the polytene chromosomes using fluorescent in situ hybridization (FISH) and identified 16 markers outside of known polymorphic inversions. Here we provide an integrated polytene chromosome map for A. funestus that includes the breakpoints of all known polymorphic inversions as well as the physical locations of microsatellite loci developed to date. Based on this map, we suggest a standard set of 16 p...
ResearchPopulation genetic structure of the malaria vector Anopheles nili in sub-Saharan Africa
2010
Background: Anopheles nili is a widespread efficient vector of human malaria parasites in the humid savannas and forested areas of sub-Saharan Africa. Understanding An. nili population structure and gene flow patterns could be useful for the development of locally-adapted vector control measures. Methods: Polymorphism at eleven recently developed microsatelitte markers, and sequence variation in four genes within the 28s rDNA subunit (ITS2 and D3) and mtDNA (COII and ND4) were assessed to explore the level of genetic variability and differentiation among nine populations of An. nili from Senegal, Ivory Coast, Burkina Faso, Nigeria, Cameroon and the Democratic Republic of Congo (DRC). Results: All microsatellite loci successfully amplified in all populations, showing high and very similar levels of genetic diversity in populations from West Africa and Cameroon (mean Rs = 8.10-8.88, mean He = 0.805-0.849) and much lower diversity in the Kenge population from DRC (mean Rs = 5.43, mean ...
Heredity, 2003
Islands are choice settings for experimental studies of vector control strategies based on transgenic insects. Before considering this approach, knowledge of the population structure of the vector is essential. Genetic variation at 12 microsatellite loci was therefore studied in samples of the malaria vector Anopheles gambiae s.s., collected from six localities of Sã o Tomé island (West Africa). The objectives were (i) to assess the demographic stability and effective population size of A. gambiae from these sites, (ii) to determine population differentiation and (iii) to relate the observed patterns of population structure with geographic, ecological and historical aspects of the vector on the island.
Genetic isolation within the malaria mosquito Anopheles melas
Molecular Ecology, 2012
Anopheles melas is a brackish water-breeding member of the Anopheles gambiae complex that is distributed along the coast of West Africa and is a major malaria vector within its range. Because little is known about the population structure of this species, we analysed 15 microsatellite markers and 1161 bp of mtDNA in 11 A. melas populations collected throughout its range. Compared with its sibling species A. gambiae, A. melas populations have a high level of genetic differentiation between them, representing its patchy distribution due to its fragmented larval habitat that is associated with mangroves and salt marsh grass. Populations clustered into three distinct groups representing Western Africa, Southern Africa and Bioko Island populations that appear to be mostly isolated. Fixed differences in the mtDNA are present between all three clusters, and a Bayesian clustering analysis of the microsatellite data found no evidence for migration from mainland to Bioko Island populations, and little migration was evident between the Southern to the Western cluster. Surprisingly, mtDNA divergence between the three A. melas clusters is on par with levels of divergence between other species of the A. gambiae complex, and no support for monophyly was observed in a maximum-likelihood phylogenetic analysis. Finally, an approximate Bayesian analysis of microsatellite data indicates that Bioko Island A. melas populations were connected to the mainland populations in the past, but became isolated, presumably when sea levels rose after the last glaciation period ( ! 10 000-11 000 BP). This study has exposed species-level genetic divergence within A. melas and also has implications for control of this malaria vector.
Journal of the American Mosquito Control Association, 1998
The potential of microsatellites as population genetic markers in the malarial vectors Anopheles gambiae and Anopheles arabiensis was assessed using 4 loci. Substantial genetic divergence was found not only between these species but also between the Mopti and Forest chromosomal forms of An. gambiae, demonstrating that microsatellites do have the power to detect barriers to gene flow in these mosquitoes. However, application and interpretation of microsatellites was not necessarily straightforward. Despite the use of semiautomated fluorescent technology that enabled fragment sizes to be determined precisely, some difficulty was encountered in allele classification. Sequence analysis revealed insertions/deletions and base changes in the flanking regions of the microsatellite as the probable cause of this problem. The implications of this and other potential pitfalls in the use of microsatellites to study vector populations are discussed.
Infection, Genetics and Evolution, 2011
Anopheles funestus is one of the most proficient malaria vectors in the world, mainly because of its remarkable ability to populate a wide range of ecological settings across Africa. Its formidable environmental plasticity has been primarily associated to high amounts of genetic and inversion polymorphisms. However, very little is known about the morphological changes that this ecological adaptation entails. Here, we report on wing morphometric variations in karyotyped specimens of this species collected throughout a wide range of eco-geographical conditions in Cameroon (Central Africa). Our results revealed strong selection on mosquito wing traits. Variation of wing size was dependent on temperature and elevation (p<0.001), while wing shape did not exhibit a specific environmental pattern. On the other hand, we observed a significant correlation of wing shape variation (p<0.001), but not size (p>0.05), with regard to karyotype. This pattern was maintained across different environmental conditions. In conclusion, our findings cast strong evidence that change in morphometric traits are under natural selection and contribute to local adaptation in Anopheles funestus populations. Furthermore, the robust relation between chromosome polymorphisms and wing shape suggests new evolutionary hypotheses about the effect of chromosomal inversions on phenotypic variation in this malaria vector.
Journal of the American Mosquito Control Association, 1999
Samples of the neotropical malaria vector Anopheles darlingi from Bolivia, Brazil, and Venezuela were analyzed to test for differences in mitochondrial haplotype frequencies. With the use of molecular variance components and F-statistics, significant genetic variability of An. darlingi was found apportioned primarily among populations within regions or within populations, with regions defined either as biomes (n = 5) or ecoregions (n = 2). The Mantel analysis resulted in a significant correlation [Prob (r) = 0.009] between genetic and geographic distances, evidence that these populations are genetically isolated by distance. Such isolation could reflect differences in phenotypes for factors affecting vector capacity.