SCFAs Induce Mouse Neutrophil Chemotaxis through the GPR43 Receptor (original) (raw)
Related papers
Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites
Clinical Science, 2009
SCFAs (short-chain fatty acids) are produced by anaerobic bacterial fermentation. Increased concentrations of these fatty acids are observed in inflammatory conditions, such as periodontal disease, and at sites of anaerobic infection. In the present study, the effect of the SCFAs acetate, propionate and butyrate on neutrophil chemotaxis and migration was investigated. Experiments were carried out in rats and in vitro. The following parameters were measured: rolling, adherence, expression of adhesion molecules in neutrophils (L-selectin and β2 integrin), transmigration, air pouch influx of neutrophils and production of cytokines [CINC-2αβ (cytokine-induced neutrophil chemoattractant-2αβ), IL-1β (interleukin-1β), MIP-1α (macrophage inflammatory protein-1α) and TNF-α (tumour necrosis factor-α)]. SCFAs induced in vivo neutrophil migration and increased the release of CINC-2αβ into the air pouch. These fatty acids increased the number of rolling and adhered cells as evaluated by intravit...
Regulation of inflammation by short chain fatty acids
2011
The short chain fatty acids (SCFAs) acetate (C 2), propionate (C 3) and butyrate (C 4) are the main metabolic products of anaerobic bacteria fermentation in the intestine. In addition to their important role as fuel for intestinal epithelial cells, SCFAs modulate different processes in the gastrointestinal (GI) tract such as electrolyte and water absorption. These fatty acids have been recognized as potential mediators involved in the effects of gut microbiota on intestinal immune function. SCFAs act on leukocytes and endothelial cells through at least two mechanisms: activation of GPCRs (GPR41 and GPR43) and inhibiton of histone deacetylase (HDAC). SCFAs regulate several leukocyte functions including production of cytokines (TNF-α, IL-2, IL-6 and IL-10), eicosanoids and chemokines (e.g., MCP-1 and CINC-2). The ability of leukocytes to migrate to the foci of inflammation and to destroy microbial pathogens also seems to be affected by the SCFAs. In this review, the latest research that describes how SCFAs regulate the inflammatory process is presented. The effects of these fatty acids on isolated cells (leukocytes, endothelial and intestinal epithelial cells) and, particularly, on the recruitment and activation of leukocytes are discussed. Therapeutic application of these fatty acids for the treatment of inflammatory pathologies is also highlighted.
Mucosal Immunology
Intestinal IgA, which is regulated by gut microbiota, plays a crucial role in maintenance of intestinal homeostasis and in protecting the intestines from inflammation. However, the means by which microbiota promotes intestinal IgA responses remain unclear. Emerging evidence suggests that the host can sense gut bacterial metabolites in addition to pathogen-associated molecular patterns and that recognition of these small molecules influences host immune response in the intestines and beyond. We reported here that microbiota metabolite short-chain fatty acid acetate promoted intestinal IgA responses, which was mediated by "metabolite-sensing" GPR43. GPR43 −/− mice demonstrated lower levels of intestinal IgA and IgA + gut bacteria compared to those in WT mice. Feeding WT but not GPR43 −/− mice acetate but not butyrate promoted intestinal IgA response independent of T cells. Acetate promoted B cell IgA class switching and IgA production in vitro in the presence of WT but not GPR43 −/− dendritic cells (DC). Mechanistically, acetate induced DC expression of Aldh1a2, which converts Vitamin A into its metabolite retinoic acid (RA). Moreover, blockade of RA signaling inhibited the acetate induction Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
A Role for Gut Microbiota and the Metabolite-Sensing Receptor GPR43 in a Murine Model of Gout
Arthritis & Rheumatology, 2015
Objective. Host-microbial interactions are central in health and disease. Monosodium urate (MSU) crystals cause gout by activating the NLPR3 inflammasome, leading to IL-1β production and neutrophil recruitment. Here, the relevance of gut microbiota, acetate and the metabolic sensor receptor GPR43 in regulating inflammation was studied in a murine model of gout. Methods. Gout was induced by the injection of MSU crystals in the knee joint of mice. Macrophages from the various animals were stimulated to determine inflammasome activation and production of reactive oxygen species (ROS). Results. Injection of MSU crystals caused joint inflammation, as seen by neutrophil influx, hypernociception, and production of IL-1β and CXCL1. These parameters were greatly decreased in germ free mice, mice treated with antibiotics and in Gpr43-deficient mice. Re-colonization or administration of acetate to germ free mice restored inflammation in response to injection of MSU crystals. In vitro, macrophages produced ROS and assembled the inflammasome when stimulated with MSU. Macrophages from germ free animals produced little ROS and there was little inflammasome assembly. Similar results were observed in macrophages from Gpr43-deficient mice. Treatment of germ free mice with acetate restored in vitro responsiveness of macrophages to MSU crystals. Conclusion. In the absence of microbiota, there is decreased production of SCFAs that are necessary for adequate inflammasome assembly and IL-1β production in a manner that is at least partially dependent on GPR43. These results clearly show that the commensal microbiota shapes the host ability to respond to an inflammasome-dependent acute inflammatory stimulus outside the gut.
Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases
Journal of gastroenterology, 2016
Gut microbiota has been well recognized in regulation of intestinal homeostasis and pathogenesis of inflammatory bowel diseases. However, the mechanisms involved are still not completely understood. Further, the components of the microbiota which are critically responsible for such effects are also largely unknown. Accumulating evidence suggests that, in addition to pathogen-associated molecular patterns, nutrition and bacterial metabolites might greatly impact the immune response in the gut and beyond. Short chain fatty acids (SCFA), which are metabolized by gut bacteria from otherwise indigestible fiber-rich diets, have been shown to ameliorate diseases in animal models of inflammatory bowel diseases (IBD) and allergic asthma. Although the exact mechanisms for the action of SCFA are still not completely clear, most notable among the SCFA targets is the mammalian G protein-coupled receptor pair of GPR41 and GPR43. In addition to the well-documented inhibition of histone deacetylase...
Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells
European journal of pharmacology, 2018
In the gastro-intestinal tract, short chain fatty acids (SCFAs) have protective effects on epithelial cells. However, their effects on inflammatory cytokine production by endothelial and immune cells and the recruitment of immune cells and their trans-migration across the endothelial layer remain controversial. Both cell types are associated with the initiation and development of inflammatory diseases, such as atherosclerosis and sepsis. SCFAs modulate immune and inflammatory responses via activation of free fatty acid (FFA) receptors type 2 and 3 (FFA2 and FFA3 receptors), G protein-coupled receptor 109A (GPR109A) and inhibition of histone deacetylases (HDACs). This review will focus on the effects of SCFAs on lipopolysaccharide (LPS)- or tumor necrosis factor-alpha (TNFα)-induced inflammatory response on endothelial and immune cells function, and an overview is presented on the underlying mechanisms of the effects of SCFAs on both immune and endothelial cells, including HDACs, FFA...
Regulation of immune cell function by short-chain fatty acids
Clinical & Translational Immunology, 2016
Short-chain fatty acids (SCFAs) are bacterial fermentation products, which are chemically composed by a carboxylic acid moiety and a small hydrocarbon chain. Among them, acetic, propionic and butyric acids are the most studied, presenting, respectively, two, three and four carbons in their chemical structure. These metabolites are found in high concentrations in the intestinal tract, from where they are uptaken by intestinal epithelial cells (IECs). The SCFAs are partially used as a source of ATP by these cells. In addition, these molecules act as a link between the microbiota and the immune system by modulating different aspects of IECs and leukocytes development, survival and function through activation of G protein coupled receptors (FFAR2, FFAR3, GPR109a and Olfr78) and by modulation of the activity of enzymes and transcription factors including the histone acetyltransferase and deacetylase and the hypoxia-inducible factor. Considering that, it is not a surprise, the fact that these molecules and/or their targets are suggested to have an important role in the maintenance of intestinal homeostasis and that changes in components of this system are associated with pathological conditions including inflammatory bowel disease, obesity and others. The aim of this review is to present a clear and updated description of the effects of the SCFAs derived from bacteria on host immune system, as well as the molecular mechanisms involved on them.
Expression of the short-chain fatty acid receptor, GPR43, in the human colon
Journal of Molecular Histology, 2007
Short-chain fatty acids (SCFAs), 2-4 carbon monocarboxylates including acetate, propionate and butyrate, are known to have a variety of physiological and pathophysiological effects on the intestine. Previously, we reported that the SCFA receptor, G-protein coupled receptor 43 (GPR43), is expressed by enteroendocrine and mucosal mast cells in the rat intestine. In the present study, expression and localization of GPR43 were investigated in the human large intestine. Gene and protein expression of GPR43 in the human ascending colon was analyzed by reverse transcriptase/polymerase chain reaction and Western blotting, respectively. In addition, localization of GPR43 was investigated by immunohistochemistry. In RT-PCR analysis, GPR43 mRNA was detected in whole wall mRNA samples. Western blotting analysis revealed the expression of GPR43 protein in whole wall and scraped mucosa protein samples, but not in muscle or submucosa. GPR43 immunoreactivity was observed in the intracellularly in enterocytes and in the peptide YY-immunoreactive enteroendocrine cells. These results indicate that the short chain fatty acid receptor, GPR43 is expressed by enteroendocrine L cells containing peptide YY in the human large intestine.