Reconstructing balloon trajectories in the tropical stratosphere with a hybrid model using analysed fields (original) (raw)

2001, Quarterly Journal of the Royal Meteorological Society

Low-Atmosphere Drifting Balloons: Platforms for Environment Monitoring and Forecast Improvement

Bulletin of the American Meteorological Society, 2016

Balloons are one of the key observing platforms for the atmosphere. Radiosounding is the most commonly used technique and provides over a thousand vertical profiles worldwide every day. These data represent an essential cornerstone of data assimilation for numerical weather prediction systems. Although less common (but equally interesting for the in situ investigation of the atmosphere), drifting boundary layer pressurized balloons (BLPBs) offer rare observational skills. These balloons collect meteorological and/or chemical measurements at isopycnal height as they drift in a quasi-Lagrangian way. The BLPB system presented in this paper was developed by the French Space Agency [Centre National d’Études Spatiales (CNES)] and has been used in field experiments focusing on precipitation in Africa [African Monsoon Multiscale Analysis (AMMA)] and the Mediterranean [Hydrological Cycle in the Mediterranean Experiment (HyMeX)] as well as on air pollution in India [Indian Ocean Experiment (I...

Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

Atmospheric Measurement Techniques Discussions, 2015

In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3–5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the one balloon technique that uses a simple automatic valve system to release helium from the balloon at a pre-set ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments ...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.