Olfactory learning-induced increase in spine density along the apical dendrites of CA1 hippocampal neurons (original) (raw)

Olfactory learning is associated with increased spine density along apical dendrites of pyramidal neurons in the rat piriform cortex

European Journal of Neuroscience, 2001

We studied the effect of olfactory learning on the dendritic spine density of pyramidal neurons in the rat piriform (olfactory) cortex. Rats were trained to distinguish between two pairs of odours in an olfactory discrimination task. Three days after training completion, rats were killed and layer II pyramidal neurons identi®ed by Golgi impregnation were examined with a light microscope. Counts of visible spines were performed along the secondary and tertiary branches of both the apical dendrites and the basal dendrites, which are the sites of intracortical synaptic inputs. An estimate of the true spine density was obtained using Feldman and Peters' method (1979, The Journal of Comparative Neurology, 188, 527±542). The estimated true spine density along apical dendrites was higher in neurons from trained rats than those in pseudotrained and naive rats by 15%. As length of spiny dendrites did not change signi®cantly after learning, the learning-related increase in spine density in neurons from trained rats may indicate on an increased number of excitatory synapses interconnecting pyramidal neurons in the piriform cortex, following olfactory learning.

Olfactory learning-induced morphological modifications in single dendritic spines of young rats

European Journal of Neuroscience, 2005

Learning-related morphological modifications in single dendritic spines were studied quantitatively in the brains of young Sprague-Dawley rats. We have previously shown that olfactory discrimination rule-learning results in transient physiological and morphological modifications in piriform cortex pyramidal neurons. In particular, spine density along the apical dendrites of neurons from trained rats is increased after learning. The aim of the present study was to identify and describe olfactory learning-induced modifications in the morphology of single spines along apical dendrites of the same type of neurons. By using laser-scanning confocal microscopy, we show that 3 days after training completion spines on neurons from olfactory discrimination trained rats are shorter as compared to spines on neurons from control rats. Further analysis revealed that spine shortening attributed to olfactory discrimination learning derives from shortening of spine head and not from shortening of spine neck. In addition, detailed analysis of spine head volume suggests that spines with large heads are absent after learning. As spine head size may be related to the efficacy of the synapse it bears, we suggest that modifications in spine head dimensions following olfactory rule-learning enhance the cortical network ability to enter into a 'learning mode', in which memories of new odours can be acquired rapidly and efficiently.

Simultaneous olfactory discrimination elicits a strain‐specific increase in dendritic spines in the hippocampus of inbred mice

…, 2006

This study examines the extent to which simultaneous olfactory discrimination learning increases spine density on hippocampal CA1 pyramidal neurons in C57BL/6J (C57) and DBA/2J (DBA) inbred mice, characterized by spontaneous differences in hippocampal plasticity and hippocampus-related learning. The behavioral data first showed a clear-cut difference in performance between the two strains. C57 mice learned to identify the positively reinforced olfactory cue whereas DBA did not. Both strains, however, similarly acquired the procedural aspects of the task. The morphological analysis performed 24 h posttraining revealed that spine density was significantly increased along apical, oblique, and basal dendrites in trained C57 mice compared to trained DBA mice, and to pseudotrained as well as to control cage mice of both strains. These findings confirm the ability of C57 mice to solve hippocampal-dependent tasks and provide the first evidence that simultaneous olfactory discrimination learning elicits spine growth in the mouse hippocampus. In addition, the finding that DBA mice failed to discriminate between the two olfactory cues but were as efficient as C57 mice in learning the procedural aspects of the task outlines that the structural changes observed in the latter strain were independent from any procedural learning component. V V C 2006 Wiley-Liss, Inc.

Dynamics of learning-induced spine redistribution along dendrites of pyramidal neurons in rats

European Journal of Neuroscience, 2005

L1 is a cell adhesion molecule implicated in the formation of neural circuits and synaptic plasticity. We have examined the sequence and time-frame in which modifications in the synaptic expression of L1 occur in the piriform cortex and hippocampus in the course of rule learning of an olfactory discrimination task. Rats were trained to choose the correct odour in a pair to be rewarded with drinking water. Such training requires 6-8 days on average before rats reach maximal performance. We observed a learning-induced L1 upregulation that occurred at an early training stage in the piriform cortex but only after rule-learning establishment in the hippocampus. We suggest that the dynamics of L1 up-regulation may reflect the functional role of these brain regions in olfactory rule learning.

Reduced synaptic facilitation between pyramidal neurons in the piriform cortex after odor learning

The Journal of neuroscience : the official journal of the Society for Neuroscience, 1999

Learning-related cellular modifications were studied in the rat piriform cortex after operand conditioning. Rats were trained to discriminate positive cues in pairs of odors. In one experimental paradigm, rats were trained to memorize 35-50 pairs of odors ("extensive training"). In another paradigm, training was continued only until rats acquired the rule of the task, usually after learning the first two pairs of odors ("short training"). "Pseudotrained" and "naive" rats served as controls. We have previously shown that "rule learning" of this task was accompanied by reduced spike afterhyperpolarization in pyramidal neurons in brain slices of the piriform cortex. In the present study, synaptic inputs to the same cells were examined. Pairs of electrical stimuli applied to the intrinsic fibers that interconnect layer II pyramidal neurons revealed significant reduction in paired-pulse facilitation (PPF) in this pathway even after short ...

Dynamics of olfactory learning-induced up-regulation of L1 in the piriform cortex and hippocampus

European Journal of Neuroscience, 2005

L1 is a cell adhesion molecule implicated in the formation of neural circuits and synaptic plasticity. We have examined the sequence and time-frame in which modifications in the synaptic expression of L1 occur in the piriform cortex and hippocampus in the course of rule learning of an olfactory discrimination task. Rats were trained to choose the correct odour in a pair to be rewarded with drinking water. Such training requires 6-8 days on average before rats reach maximal performance. We observed a learning-induced L1 upregulation that occurred at an early training stage in the piriform cortex but only after rule-learning establishment in the hippocampus. We suggest that the dynamics of L1 up-regulation may reflect the functional role of these brain regions in olfactory rule learning.

An Olfacto-Hippocampal Network Is Dynamically Involved in Odor-Discrimination Learning

Journal of Neurophysiology, 2007

Several studies have shown that memory consolidation relies partly on interactions between sensory and limbic areas. The functional loop formed by the olfactory system and the hippocampus represents an experimentally tractable model that can provide insight into this question. It had been shown previously that odor-learning associated beta band oscillations (15-30 Hz) of the local field potential in the rat olfactory system are enhanced with criterion performance, but it was unknown if these involve networks beyond the olfactory system. We recorded local field potentials from the olfactory bulb (OB) and dorsal and ventral hippocampus during acquisition of odor discriminations in a go/no-go task. These regions showed increased beta oscillation power during odor sampling, accompanied by a coherence increase in this frequency band between the OB and both hippocampal subfields. This coherence between the OB and the hippocampus increased with the onset of the first rule transfer to a new odor set and remained high for all learning phases and subsequent odor sets. However, coherence between the two hippocampal fields reset to baseline levels with each new odor set and increased again with criterion performance. These data support hippocampal involvement in the network underlying odor-discrimination learning and also suggest that cooperation between the dorsal and ventral hippocampus varies with learning progress. Oscillatory activity in the beta range may thus provide a mechanism by which these areas are linked during memory consolidation, similar to proposed roles of beta oscillations in other systems with long-range connections.

Olfactory learning induces differential long-lasting changes in rat central olfactory pathways

Neuroscience, 2001

In the present work, we investigated lasting changes induced by olfactory learning at different levels of the olfactory pathways. For this, evoked field potentials induced by electrical stimulation of the olfactory bulb were recorded simultaneously in the anterior piriform cortex, the posterior piriform cortex, the lateral entorhinal cortex and the dentate gyrus. The amplitude of the evoked field potential's main component was measured in each site before, immediately after, and 20 days after completion of associative learning. Evoked field potential recordings were carried out under two experimental conditions in the same animals: awake and anesthetized. In the learning task, rats were trained to associate electrical stimulation of one olfactory bulb electrode with the delivery of sucrose (positive reward), and stimulation of a second olfactory bulb electrode with the delivery of quinine (negative reward). In this way, stimulation of the same olfactory bulb electrodes used for ...

Maturation of pyramidal cells in anterior piriform cortex may be sufficient to explain the end of early olfactory learning in rats

Learning & Memory, 2019

Studies have shown that neonate rodents exhibit high ability to learn a preference for novel odors associated with thermo-tactile stimuli that mimics maternal care. Artificial odors paired with vigorous strokes in rat pups younger than 10 postnatal days (P), but not older, rapidly induce an orientation-approximation behavior toward the conditioned odor in a two-choice preference test. The olfactory bulb (OB) and the anterior olfactory cortex (aPC), both modulated by norepinephrine (NE), have been identified as part of a neural circuit supporting this transitory olfactory learning. One possible explanation at the neuronal level for why the odor-stroke pairing induces consistent orientation-approximation behavior in P10, is the coincident activation of prior existent neurons in the aPC mediating this behavior. Specifically, odor-stroke conditioning in P10 pups, promoting orientation-approximation behavior in the former but not in the latter. In order to test this hypothesis, we perfor...