Pinning and gas oversaturation imply stable single surface nanobubbles (original) (raw)
2015, Physical review. E, Statistical, nonlinear, and soft matter physics
Surface nanobubbles are experimentally known to survive for days at hydrophobic surfaces immersed in gas-oversaturated water. This is different from bulk nanobubbles, which are pressed out by the Laplace pressure against any gas oversaturation and dissolve in submilliseconds, as derived by Epstein and Plesset [J. Chem. Phys. 18, 1505 (1950)]. Pinning of the contact line has been speculated to be the reason for the stability of the surface nanobubbles. Building on an exact result by Popov [Phys. Rev. E 71, 036313 (2005)] on coffee stain evaporation, here we confirm this speculation by an exact calculation for single surface nanobubbles. It is based only on (i) the diffusion equation, (ii) Laplace pressure, and (iii) Henry's equation, i.e., fluid dynamical equations which are all known to be valid down to the nanometer scale. The crucial parameter is the gas oversaturation ΞΆ of the liquid. At the stable equilibrium, the gas overpressures due to this oversaturation and the Laplace ...
Related papers
Physical Properties of Nanobubbles on Hydrophobic Surfaces in Water and Aqueous Solutions
Langmuir, 2006
In recent years there has been an accumulation of evidence for the existence of nanobubbles on hydrophobic surfaces in water, despite predictions that such small bubbles should rapidly dissolve because of the high internal pressure associated with the interfacial curvature and the resulting increase in gas solubility. Nanobubbles are of interest among surface scientists because of their potential importance in the long-range hydrophobic attraction, microfluidics, and adsorption at hydrophobic surfaces. Here we employ recently developed techniques designed to induce nanobubbles, coupled with high-resolution tapping-mode atomic force microscopy (TM-AFM) to measure some of the physical properties of nanobubbles in a reliable and repeatable manner. We have reproduced the earlier findings reported by Hu and co-workers. We have also studied the effect of a wide range of solutes on the stability and morphology of these deliberately formed nanobubbles, including monovalent and multivalent salts, cationic, anionic, and nonionic surfactants, as well as solution pH. The measured physical properties of these nanobubbles are in broad agreement with those of macroscopic bubbles, with one notable exception: the contact angle. The nanobubble contact angle (measured through the denser aqueous phase) was found to be much larger than the macroscopic contact angle on the same substrate. The larger contact angle results in a larger radius of curvature and a commensurate decrease in the Laplace pressure. These findings provide further evidence that nanobubbles can be formed in water under some conditions. Once formed, these nanobubbles remain on hydrophobic surfaces for hours, and this apparent stability still remains a well-recognized mystery. The implications for sample preparation in surface science and in surface chemistry are discussed.
Wetting of nanophases: Nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces
Advances in colloid and interface science, 2014
The observation by Atomic Force Microscopy of a range of nanophases on hydrophobic surfaces poses some challenging questions, not only related to the stability of these objects but also regarding their wetting properties. Spherical capped nanobubbles are observed to exhibit contact angles that far exceed the macroscopic contact angle measured for the same materials, whereas nanodroplets exhibit contact angles that are much the same as the macroscopic contact angle. Micropancakes are reported to consist of gas, in which case their wetting properties are mysterious. They should only be stable when the van der Waals forces act to thicken the film whereas for a gas, the van der Waals forces will always act to thin the film. Here we examine the available evidence and contribute some additional experiments in order to review our understanding of the wetting properties of these nanophases. We demonstrate that if in fact micropancakes consist of a contaminant their wetting properties can be...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.