FGF-21 as a novel metabolic regulator (original) (raw)

Therapeutic potential of FGF21 in diabetes

FGF21, an endocrine regulator, is a member of the fibroblast growth factor family. The FGF family has 22 members in the humans. Its receptor family, i.e. FGFR has 4 members in the Homo sapiens. The family of FGF has been only found in multicellular organisms. The FGF21 has a key role in the regulation of various metabolic fundamental physiological processes such as cell differentiation, morphogenesis, proliferation etc. FGF21 has varied importance in various metabolic pathways. It has been found that FGF21 is able to augment insulin activity in the glucose uptake and thus has an insulin-like activity in addition it has been found to have anti-obesity effects. Further, FGF 21 has been found to have lipolytic activity in adipocytes, capability to carry ketogenesis, clearance of triglycerides in hepatocytes, potential to carry torpor and signalling of hormones required for growth in hepatocytes. Any aberrations in the FGF21 have been linked to hazardous health conditions of cancer and metabolic disorders. Various diseases such as NAFLD, Cushing's syndrome, lypodystrophye, end stage renal disease have been diagnosed with increased FGF21 serum levels. There is a wide scope of therapeutic applications considering numerous pathways that FGF21 is an integral part of and could also play as a biomarker for identification of numerous diseases.

Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models--association with liver and adipose tissue effects

AJP: Endocrinology and Metabolism, 2009

Recombinant fibroblast growth factor (FGF)21 has antihyperglycemic, antihyperlipidemic, and antiobesity effects in diabetic rodent and monkey models. Previous studies were confined to measuring steady-state effects of FGF21 following subchronic or chronic administration. The present study focuses on the kinetics of biological actions of FGF21 following a single injection and on the associated physiological and cellular mechanisms underlying FGF21 actions. We show that FGF21 resulted in rapid decline of blood glucose levels and immediate improvement of glucose tolerance and insulin sensitivity in two animal models of insulin resistance ( ob/ob and DIO mice). In ob/ob mice, FGF21 led to a 40–60% decrease in blood glucose, insulin, and amylin levels within 1 h after injection, and the maximal effects were sustained for more than 6 h despite the 1- to 2-h half-life of FGF21. In DIO mice, FGF21 reduced fasting blood glucose and insulin levels and improved glucose tolerance and insulin se...

The Role of Fibroblast Growth Factor 21 (FGF21) on Energy Balance, Glucose and Lipid Metabolism

Current Diabetes Reviews, 2009

FGF21 is a novel member of the FGFs family, is mainly expressed in liver and it functions as a potent activator of glucose uptake on adipocytes. When over expressed in transgenic mice, it protects animals from diet-induced obesity and its administration to diabetic rodents and monkeys lowers blood glucose and triglyceride levels. Recently, increased levels of FGF21 have been identified as an independent risk factor related with metabolic syndrome. A review of the relevant roles of FGF21 in metabolism is presented here.

An Overview of FGF19 and FGF21: The Therapeutic Role in the Treatment of the Metabolic Disorders and Obesity

Hormone and Metabolic Research

Fibroblast growth factors (FGFs) are responsible for the regulation of a wide range of biological functions, among which cellular proliferation, survival, migration, and differentiation could be pointed out. FGF19 controls the enterohepatic bile acid/cholesterol system, and FGF21 modulates fatty acid/glucose metabolism. Obesity, type 2 diabetes, coronary artery disease, and cancer, all can alter FGF21 circulating concentrations. In contrast to FGF21, metabolic diseases exhibit reduced serum FGF19 levels. Accordingly, FGF19 and FGF21 play important roles in regulating glucose and lipid metabolism. Hence, we present here a timely review on the relationship between FGF19/21 and metabolic diseases, especially obesity, and their probable role in development and treatment of obesity seems necessary.

MECHANISMS IN ENDOCRINOLOGY: Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21

2012

Fibroblast growth factor 21 (FGF21), a 181 amino acid circulating protein, is a member of the FGF superfamily, with relevant metabolic actions. It acts through the interaction with specific FGF receptors and a cofactor called b-Klotho, whose expression is predominantly detected in metabolically active organs. FGF21 stimulates glucose uptake in adipocytes via the induction of glucose transporter-1. This action is additive and independent of insulin. b-Cell function and survival are preserved, and glucagon secretion is reduced by this protein, thus decreasing hepatic glucose production and improving insulin sensitivity. Lipid profile has been shown to be improved by FGF21 in several animal models. FGF21 increases energy expenditure in rodents and induces weight loss in diabetic nonhuman primates. It also exerts favorable effects on hepatic steatosis and reduces tissue lipid content in rodents. Adaptive metabolic responses to fasting, including stimulation of ketogenesis and fatty acid oxidation, seem to be partially mediated by FGF21. In humans, serum FGF21 concentrations have been found elevated in insulin-resistant states, such as impaired glucose tolerance and type 2 diabetes. FGF21 levels are correlated with hepatic insulin resistance index, fasting blood glucose, HbA1c, and blood glucose after an oral glucose tolerance test. A relationship between FGF21 levels and long-term diabetic complications, such as nephropathy and carotid atheromatosis, has been reported. FGF21 levels decreased in diabetic patients after starting therapy with insulin or oral agents. Increased FGF21 serum levels have also been found to be associated with obesity. In children, it is correlated with BMI and leptin levels, whereas in adults, FGF21 levels are mainly related to several components of the metabolic syndrome. Serum FGF21 levels have been found to be elevated in patients with ischemic heart disease. In patients with renal disease, FGF21 levels exhibited a progressive increase as renal function deteriorates. Circulating FGF21 levels seem to be related to insulin resistance and inflammation in dialysis patients. In summary, FGF21 is a recently identified hormone with antihyperglycemic, antihyperlipidemic, and thermogenic properties. Direct or indirect potentiation of its effects might be a potential therapeutic target in insulin-resistant states.

Cellular Mechanisms by Which FGF21 Improves Insulin Sensitivity in Male Mice

Endocrinology, 2013

Fibroblast growth factor 21 (FGF21) is a potent regulator of glucose and lipid metabolism and is currently being pursued as a therapeutic agent for insulin resistance and type 2 diabetes. However, the cellular mechanisms by which FGF21 modifies insulin action in vivo are unclear. To address this question, we assessed insulin action in regular chow– and high-fat diet (HFD)–fed wild-type mice chronically infused with FGF21 or vehicle. Here, we show that FGF21 administration results in improvements in both hepatic and peripheral insulin sensitivity in both regular chow– and HFD-fed mice. This improvement in insulin responsiveness in FGF21-treated HFD-fed mice was associated with decreased hepatocellular and myocellular diacylglycerol content and reduced protein kinase Cϵ activation in liver and protein kinase Cθ in skeletal muscle. In contrast, there were no effects of FGF21 on liver or muscle ceramide content. These effects may be attributed, in part, to increased energy expenditure i...

LY2405319, an Engineered FGF21 Variant, Improves the Metabolic Status of Diabetic Monkeys

PLoS ONE, 2013

Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator that represents a promising target for the treatment of several metabolic diseases. Administration of recombinant wild type FGF21 to diabetic animals leads to a dramatic improvement in glycaemia and ameliorates other systemic measures of metabolic health. Here we report the pharmacologic outcomes observed in non-human primates upon administration of a recently described FGF21 analogue, LY2405319 (LY). Diabetic rhesus monkeys were treated subcutaneously with LY once daily for a period of seven weeks. The doses of LY used were 3, 9 and 50 mg/kg each delivered in an escalating fashion with washout measurements taken at 2, 4, 6 and 8 weeks following the final LY dose. LY therapy led to a dramatic and rapid lowering of several important metabolic parameters including glucose, body weight, insulin, cholesterol and triglyceride levels at all doses tested. In addition, we observed favorable changes in circulating profiles of adipokines, with increased adiponectin and reduced leptin indicative of direct FGF21 action on adipose tissue. Importantly, and for the first time we show that FGF21 based therapy has metabolic efficacy in an animal with late stage diabetes. While the glycemic efficacy of LY in this animal was partially attenuated its lipid lowering effect was fully preserved suggesting that FGF21 may be a viable treatment option even in patients with advanced disease progression. These findings support continued exploration of the FGF21 pathway for the treatment of metabolic disease.

A Long-Acting FGF21 Molecule, PF-05231023, Decreases Body Weight and Improves Lipid Profile in Non-human Primates and Type 2 Diabetic Subjects

Cell metabolism, 2016

FGF21 plays a central role in energy, lipid, and glucose homeostasis. To characterize the pharmacologic effects of FGF21, we administered a long-acting FGF21 analog, PF-05231023, to obese cynomolgus monkeys. PF-05231023 caused a marked decrease in food intake that led to reduced body weight. To assess the effects of PF-05231023 in humans, we conducted a placebo-controlled, multiple ascending-dose study in overweight/obese subjects with type 2 diabetes. PF-05231023 treatment resulted in a significant decrease in body weight, improved plasma lipoprotein profile, and increased adiponectin levels. Importantly, there were no significant effects of PF-05231023 on glycemic control. PF-05231023 treatment led to dose-dependent changes in multiple markers of bone formation and resorption and elevated insulin-like growth factor 1. The favorable effects of PF-05231023 on body weight support further evaluation of this molecule for the treatment of obesity. Longer studies are needed to assess pot...

Canine Fibroblast Growth Factor 21 Ameliorates Hyperglycemia Associated with Inhibiting Hepatic Gluconeogenesis and Improving Pancreatic Beta-Cell Survival in Diabetic Mice and Dogs

PloS one, 2016

Diabetes mellitus is a common endocrinopathy in dog. Fibroblast growth factor 21 (FGF-21) is a secreted protein, which is involved in glucose homeostasis. We speculate that the recombinant canine FGF-21 (cFGF-21) has the potential to become a powerful therapeutics to treat canine diabetes. The cFGF-21 gene was cloned and expressed in E. coli Rosetta (DE3). After purification, a cFGF-21 protein with the purity exceeding 95% was obtained. Mouse 3T3-L1 adipocytes and type 1 diabetic mice/dogs induced by STZ were used to examine the biological activity of cFGF-21 in vitro and in vivo, respectively. Results showed that cFGF-21 stimulated glucose uptake in adipocytes significantly in a dose-dependent manner, and reduced plasma glucose significantly in diabetic mice/dogs. After treatment with cFGF-21, the serum insulin level, glycosylated hemoglobin (HbA1c) level and the expressions of the hepatic gluconeogenesis genes (glucose-6-phosphatase, G6Pase and phosphoenolpyruvate carboxykinase, P...

Fibroblast Growth Factor 21 Improves Insulin Sensitivity and Synergizes with Insulin in Human Adipose Stem Cell-Derived (hASC) Adipocytes

PLoS ONE, 2014

Fibroblast growth factor 21 (FGF21) has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC) adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination. Insulin signaling under these conditions was assessed by measuring tyrosine phosphorylation of insulin receptor (InsR), insulin receptor substrate-1 (IRS-1), and serine 473 phosphorylation of Akt, followed by a functional assay using 14C-2-deoxyglucose [ 14 C]-2DG to measure glucose uptake in these cells. FGF21 alone caused a modest increase of glucose uptake, but treatment with FGF21 in combination with insulin had a synergistic effect on glucose uptake in these cells. The presence of FGF21 also effectively lowered the insulin concentration required to achieve the same level of glucose uptake compared to the absence of FGF21 by 10-fold. This acute effect of FGF21 on insulin signaling was not due to IR, IGF-1R, or IRS-1 activation. Moreover, we observed a substantial increase in basal S473-Akt phosphorylation by FGF21 alone, in contrast to the minimal shift in basal glucose uptake. Taken together, our data demonstrate that acute co-treatment of hASC-adipocytes with FGF21 and insulin can result in a synergistic improvement in glucose uptake. These effects were shown to occur at or downstream of Akt, or separate from the canonical insulin signaling pathway.