Dual Regulation Role of GH3.5 in Salicylic Acid and Auxin Signaling during Arabidopsis-Pseudomonas syringae Interaction (original) (raw)

Arabidopsis Auxin Mutants Are Compromised in Systemic Acquired Resistance and Exhibit Aberrant Accumulation of Various Indolic Compounds

PLANT PHYSIOLOGY, 2010

Systemic acquired resistance is a widespread phenomenon in the plant kingdom that confers heightened and often enduring immunity to a range of diverse pathogens. Systemic immunity develops through activation of plant disease resistance protein signaling networks following local infection with an incompatible pathogen. The accumulation of the phytohormone salicylic acid in systemically responding tissues occurs within days after a local immunizing infection and is essential for systemic resistance. However, our knowledge of the signaling components underpinning signal perception and the establishment of systemic immunity are rudimentary. Previously, we showed that an early and transient increase in jasmonic acid in distal responding tissues was central to effective establishment of systemic immunity. Based upon predicted transcriptional networks induced in naive Arabidopsis (Arabidopsis thaliana) leaves following avirulent Pseudomonas syringae challenge, we show that a variety of aux...

The Pseudomonas syringae Type III Effector AvrRpt2 Promotes Pathogen Virulence via Stimulating Arabidopsis Auxin/Indole Acetic Acid Protein Turnover

PLANT PHYSIOLOGY, 2013

To accomplish successful infection, pathogens deploy complex strategies to interfere with host defense systems and subvert host physiology to favor pathogen survival and multiplication. Modulation of plant auxin physiology and signaling is emerging as a common virulence strategy for phytobacteria to cause diseases. However, the underlying mechanisms remain largely elusive. We have previously shown that the Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis (Arabidopsis thaliana) auxin physiology. Here, we report that AvrRpt2 promotes auxin response by stimulating the turnover of auxin/indole acetic acid (Aux/IAA) proteins, the key negative regulators in auxin signaling. AvrRpt2 acts additively with auxin to stimulate Aux/IAA turnover, suggesting distinct, yet proteasome-dependent, mechanisms operated by AvrRpt2 and auxin to control Aux/IAA stability. Cysteine protease activity is required for AvrRpt2-stimulated auxin signaling and Aux/IAA degradation. Importantly, transgenic plants expressing the dominant axr2-1 mutation recalcitrant to AvrRpt2-mediated degradation ameliorated the virulence functions of AvrRpt2 but did not alter the avirulent function mediated by the corresponding RPS2 resistance protein. Thus, promoting auxin response via modulating the stability of the key transcription repressors Aux/IAA is a mechanism used by the bacterial type III effector AvrRpt2 to promote pathogenicity.

Dual role of auxin in regulating plant defense and bacterial virulence gene expression duringPseudomonas syringae PtoDC3000 pathogenesis

2019

ABSTRACTModification of host hormone biology is a common strategy used by plant pathogens to promote disease. For example, the bacterial pathogenPseudomonas syringaestrainPtoDC3000 produces the plant hormone auxin (Indole-3-acetic acid, or IAA) to promotePtoDC3000 growth in plant tissue. Previous studies suggest that auxin may promotePtoDC3000 pathogenesis through multiple mechanisms, including both suppression of salicylic acid (SA)-mediated host defenses and via an unknown mechanism that appears to be independent of SA. To test if host auxin signaling is important during pathogenesis, we took advantage ofArabidopsis thalianalines impaired in either auxin signaling or perception. We found that disruption of auxin signaling in plants expressing an inducible dominantaxr2-1mutation resulted in decreased bacterial growth, demonstrating that host auxin signaling is required for normal susceptibility toPtoDC3000, and this phenotype was dependent on SA-mediated defenses. However, despite ...

Repression of the Auxin Response Pathway Increases Arabidopsis Susceptibility to Necrotrophic Fungi

Molecular Plant, 2008

In plants, resistance to necrotrophic pathogens depends on the interplay between different hormone systems, such as those regulated by salicylic acid (SA), jasmonic acid (JA), ethylene, and abscisic acid. Repression of auxin signaling by the SA pathway was recently shown to contribute to antibacterial resistance. Here, we demonstrate that Arabidopsis auxin signaling mutants axr1, axr2, and axr6 that have defects in the auxin-stimulated SCF (Skp1-Cullin-F-box) ubiquitination pathway exhibit increased susceptibility to the necrotrophic fungi Plectosphaerella cucumerina and Botrytis cinerea. Also, stabilization of the auxin transcriptional repressor AXR3 that is normally targeted for removal by the SCF-ubiquitin/proteasome machinery occurs upon P. cucumerina infection. Pharmacological inhibition of auxin transport or proteasome function each compromise necrotroph resistance of wild-type plants to a similar extent as in non-treated auxin response mutants. These results suggest that auxin signaling is important for resistance to the necrotrophic fungi P. cucumerina and B. cinerea. SGT1b (one of two Arabidopsis SGT1 genes encoding HSP90/HSC70 co-chaperones) promotes the functions of SCF E3-ubiquitin ligase complexes in auxin and JA responses and resistance conditioned by certain Resistance (R) genes to biotrophic pathogens. We find that sgt1b mutants are as resistant to P. cucumerina as wild-type plants. Conversely, auxin/SCF signaling mutants are uncompromised in RPP4-triggered resistance to the obligate biotrophic oomycete, Hyaloperonospora parasitica. Thus, the predominant action of SGT1b in R gene-conditioned resistance to oomycetes appears to be at a site other than assisting SCF E3-ubiquitin ligases. However, genetic additivity of sgt1b axr1 double mutants in susceptibility to H. parasitica suggests that SCF-mediated ubiquitination contributes to limiting biotrophic pathogen colonization once plant-pathogen compatibility is established.

The Conjugated Auxin Indole-3-Acetic Acid–Aspartic Acid Promotes Plant Disease Development

The Plant Cell, 2012

Auxin is a pivotal plant hormone that regulates many aspects of plant growth and development. Auxin signaling is also known to promote plant disease caused by plant pathogens. However, the mechanism by which this hormone confers susceptibility to pathogens is not well understood. Here, we present evidence that fungal and bacterial plant pathogens hijack the host auxin metabolism in Arabidopsis thaliana, leading to the accumulation of a conjugated form of the hormone, indole-3-acetic acid (IAA)-Asp, to promote disease development. We also show that IAA-Asp increases pathogen progression in the plant by regulating the transcription of virulence genes. These data highlight a novel mechanism to promote plant susceptibility to pathogens through auxin conjugation.

Knocking down expression of the auxin-amidohydrolase IAR3 alters defense responses in Solanaceae family plants

Plant Science, 2016

In plants, indole-3-acetic acid (IAA) amido hydrolases (AHs) participate in auxin homeostasis by releasing free IAA from IAA-amino acid conjugates. We investigated the role of IAR3, a member of the IAA amido hydrolase family, in the response of Solanaceous plants challenged by biotrophic and hemibiotrophic pathogens. By means of genome inspection and phylogenic analysis we firstly identified IAA-AH sequences and putative IAR3 orthologs in Nicotiana benthamiana, tomato and potato. We evaluated the involvement of IAR3 genes in defense responses by using virus-induced gene silencing. We observed that N. benthamiana and tomato plants with knocked-down expression of IAR3 genes contained lower levels of free IAA and presented altered responses to pathogen attack, including enhanced basal defenses and higher tolerance to infection in susceptible plants. We showed that IAR3 genes are consistently up-regulated in N. benthamiana and tomato upon inoculation with Phytophthora infestans and Cladosporium fulvum respectively. However, IAR3 expression decreased significantly when hypersensitive response was triggered in transgenic tomato plants coexpressing the Cf-4 resistance gene and the avirulence factor Avr4. Altogether, our results indicate that changes in IAR3 expression lead to alteration in auxin homeostasis that ultimately affects plant defense responses.

The roles of auxin during interactions between bacterial plant pathogens and their hosts

Journal of Experimental Botany, 2017

Plant pathogens have evolved several strategies to manipulate the biology of their hosts to facilitate colonization, growth to high levels in plant tissue, and production of disease. One of the less well known of these strategies is the synthesis of plant hormones and hormone analogs, and there is growing evidence that modulation of host hormone signaling is important during pathogenesis. Several plant pathogens produce the auxin indole-3-acetic acid (IAA) and/or virulence factors that modulate host auxin signaling. Auxin is well known for being involved in many aspects of plant growth and development, but recent findings have revealed that elevated IAA levels or enhanced auxin signaling can also promote disease development in some plant-pathogen interactions. In addition to stimulating plant cell growth during infection by gall-forming bacteria, auxin and auxin signaling can antagonize plant defense responses. Auxin can also act as a microbial signaling molecule to impact the biology of some pathogens directly. In this review, we summarize recent progress towards elucidating the roles that auxin production, modification of host auxin signaling, and direct effects of auxin on pathogens play during pathogenesis, with emphasis on the impacts of auxin on interactions with bacterial pathogens.

Induction of Arabidopsis Defense Genes by Virulent and Avirulent Pseudomonas syringae Strains and by a Cloned Avirulence Gene

The Plant Cell, 1991

We developed a model system to study the signal transduction pathways leading to the activation of Arabidopsis thaliana genes involved in the defense against pathogen attack. Here we describe the identification and characterization of virulent and avirulent Pseudomonas syringae strains that elicit disease or resistance symptoms when infiltrated into Arabidopsis leaves. The virulent and avirulent strains were characterized by determining growth of the pathogen in Arabidopsis leaves and by measuring accumulation of mRNA corresponding to Arabidopsis phenylalanine ammonia-lyase (PAL), @-1,3-glucanase (BG), and chalcone synthase (CHS) genes in infected leaves. The virulent strain, P. syringae pv maculicola ES4326, multiplied 105-fold in Arabidopsis leaves and strongly elicited BG1, BG2, and BG3 mRNA accumulation but had only a modest effect on PAL mRNA accumulation. In contrast, the avirulent strain, P. syringae pv tomato MM1065, multiplied less than 10-fold in leaves and had only a minimal effect on BGl, BG2, and BG3 mRNA accumulation, but it induced PAL mRNA accumulation. No accumulation of CHS mRNA was found with either ES4326 or MM1065. We also describe the cloning of a putative avirulence (avr) gene from the avirulent strain MM1065 that caused the virulent strain ES4326 to grow less well in leaves and to strongly elicit PAL but not BG1 and BG3 mRNA accumulation. These results suggest that the Arabidopsis PAL and BG genes may be activated by distinct signal transduction pathways and show that differences in plant gene induction by virulent and avirulent strains can be attributed to a cloned presumptive avr gene.