Intertypic genomic rearrangements of poliovirus strains in vaccinees (original) (raw)
Related papers
Journal of Medical Virology, 1991
Five representatives from a collection of 21 Sabin type 2-like poliovirus strains isolated from paralytic poliomyelitis cases in two regions of the USSR have been subjected t o limited nucleotide sequencing. All proved to be intertypic recombinants having the genes encoding capsid proteins of Sabin 2 origin and a 3'-end portion of the genome derived from either type 1 (3 isolates) or type 3 (2 isolates) Sabin strains. The crossover points in all the 5 genomes have been mapped to different loci of the P3 region. At least 6 additional isolates from the same collection (and 2 isolates from healthy contacts), appeared to have a type 2itype 1 recombinant genome, as judged by oligonucleotide mapping. The biological significance of frequent occurrence of recombinants among field isolates of vaccine-related strains is discussed.
Virology, 1987
A series of intertypic (type 3/type 1) poliovirus recombinants was obtained whose crossover sites were expected to be located in the middle of the viral genome, between the loci encoding type-specific antigenic properties, on the 5' side, and an altered sensitivity to guanidine, on the 3' side. The primary structures of the crossover regions in the genomes of these recombinants were determined by the primer extension method. The length of the crossover sites (the uninterrupted sequences shared by the recombinant and both parental genomes that are flanked, in the recombinant RNAs, by two heterotypic segments) varied between 2 and 32 nucleotides, but the majority of the sites were 5 nucleotides long or shorter. The crossover sites were nonrandomly distributed over the presumably available genome region: only a single such site was found within the gene for polypeptide 2A, whereas an apparent clustering of the crossover sites was encountered in other genomic segments. When the crossover sites were superimposed on a model of the secondary structure of the relevant region of the viral RNA molecule, a pattern consistent with the previously proposed mechanism of poliovirus recombination (L.I. Romanova, V.M. Blinov, E.A. Tolskaya, E.G. Viktorova, M.S. Kolesnikova, E.I. Guseva, and V.I. Agol (1986) Virology 155, 202-213) was observed. It is suggested that the nonrandom distribution of the crossover sites in the genomes of intertypic poliovirus recombinants was due to two factors: the existence of preferred sites for recombination, and selection against recombinants with a lowered level of viability.
Journal of Virology, 2008
Pathogenic circulating vaccine-derived polioviruses (cVDPVs) have become a major obstacle to the successful completion of the global polio eradication program. Most cVDPVs are recombinant between the oral poliovirus vaccine (OPV) and human enterovirus species C (HEV-C). To study the role of HEV-C sequences in the phenotype of cVDPVs, we generated a series of recombinants between a Madagascar cVDPV isolate and its parental OPV type 2 strain. Results indicated that the HEV-C sequences present in this cVDPV contribute to its characteristics, including pathogenicity, suggesting that interspecific recombination contributes to the phenotypic biodiversity of polioviruses and may favor the emergence of cVDPVs.
Serial Recombination during Circulation of Type 1 Wild-Vaccine Recombinant Polioviruses in China
Journal of Virology, 2003
Type 1 wild-vaccine recombinant polioviruses sharing a 367-nucleotide (nt) block of Sabin 1-derived sequence spanning the VP1 and 2A genes circulated widely in China from 1991 to 1993. We surveyed the sequence relationships among 34 wild-vaccine recombinants by comparing six genomic intervals: the conserved 5untranslated region (5-UTR) (nt 186 to 639), the hypervariable portion of the 5-UTR (nt 640 to 742), the VP4 and partial VP2 genes (nt 743 to 1176), the VP1 gene (nt 2480 to 3385), the 2A gene (nt 3386 to 3832), and the partial 3D gene (nt 6011 to 6544). The 5-UTR, capsid (VP4-VP2 and VP1), and 2A sequence intervals had similar phylogenies. By contrast, the partial 3D sequences could be distributed into five divergent genetic classes. Most (25 of 34) of the wild-vaccine recombinant isolates showed no evidence of additional recombination beyond the initial wild-Sabin recombination event. Eight isolates from 1992 to 1993, however, appear to be derived from three independent additional recombination events, and one 1993 isolate was derived from two consecutive events. Complete genomic sequences of a representative isolate for each 3D sequence class demonstrated that these exchanges had occurred in the 2B, 2C, and 3D genes. The 3D gene sequences were not closely related to those of the Sabin strains or 53 diverse contemporary wild poliovirus isolates from China, but all were related to the 3D genes of species C enteroviruses. The appearance within approximately 2.5 years of five recombinant classes derived from a single ancestral infection illustrates the rapid emergence of new recombinants among circulating wild polioviruses.
Journal of Infectious Diseases, 2012
Background. Five cases of poliomyelitis due to type 2 or 3 recombinant vaccine-derived polioviruses (VDPVs) were reported in the Toliara province of Madagascar in 2005. Methods. We sequenced the genome of the VDPVs isolated from the patients and from 12 healthy children and characterized phenotypic aspects, including pathogenicity, in mice transgenic for the poliovirus receptor. Results. We identified 6 highly complex mosaic recombinant lineages composed of sequences derived from different vaccine polioviruses and other species C human enteroviruses (HEV-Cs). Most had some recombinant genome features in common and contained nucleotide sequences closely related to certain cocirculating coxsackie A virus isolates. However, they differed in terms of their recombinant characteristics or nucleotide substitutions and phenotypic features. All VDPVs were neurovirulent in mice. Conclusions. This study confirms the genetic relationship between type 2 and 3 VDPVs, indicating that both types can be involved in a single outbreak of disease. Our results highlight the various ways in which a vaccinederived poliovirus may become pathogenic in complex viral ecosystems, through frequent recombination events and mutations. Intertypic recombination between cocirculating HEV-Cs (including polioviruses) appears to be a common mechanism of genetic plasticity underlying transverse genetic variability.
Journal of virology, 2005
We determined the complete genomic sequences of nine type 1 immunodeficient vaccine-derived poliovirus (iVDPV) isolates obtained over a 337-day period from a poliomyelitis patient from Taiwan with common variable immunodeficiency. The iVDPV isolates differed from the Sabin type 1 oral poliovirus vaccine (OPV) strain at 1.84% to 3.15% of total open reading frame positions and had diverged into at least five distinct lineages. Phylogenetic analysis suggested that the chronic infection was initiated by the fifth and last OPV dose, given 567 days before onset of paralysis, and that divergence of major lineages began very early in the chronic infection. Key determinants of attenuation in Sabin 1 had reverted in the iVDPV isolates, and representative isolates of each lineage showed increased neurovirulence for PVR-Tg21 transgenic mice. None of the isolates had retained the temperature-sensitive phenotype of Sabin 1. All isolates were antigenic variants of Sabin 1, having multiple amino ac...
PLoS Pathogens, 2009
Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17) and that sequences in the 39 half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 39 half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 39 portion of the cVDPV genome was replaced by the 39 half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence.
Multiplex PCR Method for Identifying Recombinant Vaccine-Related Polioviruses
Journal of Clinical Microbiology, 2004
The recent discovery of recombinant circulating vaccine-derived poliovirus (recombinant cVDPV) has highlighted the need for enhanced global poliovirus surveillance to assure timely detection of any future cVDPV outbreaks. Six pairs of Sabin strain-specific recombinant primers were designed to permit rapid screening for VDPV recombinants by PCR.
Virus Research, 2010
Five oral poliovirus vaccine (OPV) strains carrying an intertypic PV3/PV2 recombination in VP1 capsid protein were isolated during poliovirus surveillance. These five PV3 strains had altogether four diverse recombination crossover points near the 3 end of the VP1 coding region. The complete antigenic site IIIa was replaced by PV2-specific amino acids in four of the studied PV3 strains. Low overall number of nucleotide substitutions in VP1 indicated that the predicted replication time, "age", of the PV3 strains was short, 6 months or less. The nucleotide 472-T in the 5 non-coding region, associated to the attenuated phenotype of PV3/Sabin, was reverted to wild-type C in all studied PV3/PV2 recombinant strains. Three of the PV3 strains had at least a tripartite genome deduced from the partial 3D polymerase-coding region sequences. Our results suggest that there exists a PV3/PV2 recombination hot-spot site in the 3 partial region of the VP1 capsid protein and that the recombination may occur within weeks or a few months after the administration of OPV.
Evolution of a rare vaccine-derived multirecombinant poliovirus
Journal of General Virology, 2005
Recombination is one of the mechanisms by which viral genomes evolve. A vaccine-derived multirecombinant poliovirus strain was isolated from a 5-month-old child with vaccine-associated paralytic poliomyelitis after oral poliovirus vaccine administration. The isolate had an S2/S1/S2/S1 primary genomic structure as revealed by restriction fragment length polymorphism and sequencing analysis. Recombination of the middle S1/S2 region is extremely rare and one of the few characterized types of recombination with Sabin type 1 as a 5′ partner. An attempt was made to perform evolutionary analysis of the contributing sequences using the identified mutations in comparison with the original Sabin sequences. A hypothesis is proposed for the order in which the identified recombination events occurred.