Mutational analysis of influenza A virus nucleoprotein: identification of mutations that affect RNA replication (original) (raw)

Identification of amino acid residues of influenza virus nucleoprotein essential for RNA binding

Journal of virology, 1999

The influenza virus nucleoprotein (NP) is a single-strand-RNA-binding protein associated with genome and antigenome RNA and is one of the four virus proteins necessary for transcription and replication of viral RNA. To better characterize the mechanism by which NP binds RNA, we undertook a physical and mutational analysis of the polypeptide, with the strategy of identifying first the regions in direct contact with RNA, then the classes of amino acids involved, and finally the crucial residues by mutagenesis. Chemical fragmentation and amino acid sequencing of NP that had been UV cross linked to radiolabelled RNA showed that protein-RNA contacts occur throughout the length of the polypeptide. Chemical modification experiments implicated arginine but not lysine residues as important for RNA binding, while RNA-dependent changes in the intrinsic fluorescence spectrum of NP suggested the involvement of tryptophan residues. Supporting these observations, single-codon mutagenesis identifie...

Identification of an RNA binding region within the N-terminal third of the influenza A virus nucleoprotein

Journal of Virology, 1995

The influenza A virus nucleoprotein (NP) has been examined with regard to its RNA-binding characteristics. NP, purified from virions and devoid of RNA, bound synthetic RNAs in vitro and interacted with the ribonucleotide homopolymers poly(A), poly(G), poly(U), and poly(C) in a salt-dependent manner, showing higher binding affinity for polypyrimidine homopolymers. To map the NP regions involved in RNA binding, a series of deleted forms of the NP were prepared, and these truncated polypeptides were tested for their ability to bind poly(U) and poly(C) homopolymers linked to agarose beads. Proteins containing deletions at the N terminus of the NP molecule showed reduced RNA-binding activity, indicating that this part of the protein was required to bind RNA. To identify the NP region or regions which directly interact with RNA, proteins having the maltose-binding protein fused with various NP fragments were obtained and tested for binding to radioactively labeled RNAs in three different ...

Genetic variations on 31 and 450 residues of influenza A nucleoprotein affect viral replication and translation

Journal of Biomedical Science, 2020

Background Influenza A viruses cause epidemics/severe pandemics that pose a great global health threat. Among eight viral RNA segments, the multiple functions of nucleoprotein (NP) play important roles in viral replication and transcription. Methods To understand how NP contributes to the virus evolution, we analyzed the NP gene of H3N2 viruses in Taiwan and 14,220 NP sequences collected from Influenza Research Database. The identified genetic variations were further analyzed by mini-genome assay, virus growth assay, viral RNA and protein expression as well as ferret model to analyze their impacts on viral replication properties. Results The NP genetic analysis by Taiwan and global sequences showed similar evolution pattern that the NP backbones changed through time accompanied with specific residue substitutions from 1999 to 2018. Other than the conserved residues, fifteen sporadic substitutions were observed in which the 31R, 377G and 450S showed higher frequency. We found 31R and...

Mutational Analysis of Conserved Amino Acids in the Influenza A Virus Nucleoprotein

Journal of Virology, 2009

The nucleoprotein (NP), which has multiple functions during the virus life cycle, possesses regions that are highly conserved among influenza A, B, and C viruses. To better understand the roles of highly conserved NP amino acids in viral replication, we conducted a comprehensive mutational analysis. Using reverse genetics, we attempted to generate 74 viruses possessing mutations at conserved amino acids of NP. Of these, 48 mutant viruses were successfully rescued; 26 mutants were not viable, suggesting a critical role of the respective NP amino acids in viral replication. To identify the step(s) in the viral life cycle that is impaired by these NP mutations, we examined viral-genome replication/transcription, NP localization, and incorporation of viral-RNA segments into progeny virions. We identified 15 amino acid substitutions in NP that inhibited viralgenome replication and/or transcription, resulting in significant growth defects of viruses possessing these substitutions. We also found several NP mutations that affected the efficient incorporation of multiple viral-RNA (vRNA) segments into progeny virions even though a single vRNA segment was incorporated efficiently. The respective conserved amino acids in NP may thus be critical for the assembly and/or incorporation of sets of eight vRNA segments. by guest http://jvi.asm.org/ Downloaded from on December 18, 2016 by guest http://jvi.asm.org/ Downloaded from a We selected 74 amino acids that are conserved among influenza A, B, and C virus NPs for mutagenesis. NP mutants flagged with an asterisk were further tested for intracellular localization, and incorporation efficiency of a vRNA segment(s) into VLPs, in addition to replicative ability and polymerase activity. b Viruses were generated using an established plasmid-based reverse-genetics system. ϩ, NP mutant virus recovery was verified by plaque assay, cytopathic effect, and NP gene sequencing; Ϫ, no replicating virus was recovered.

Molecular dissection of influenza virus nucleoprotein: deletion mapping of the RNA binding domain

Journal of Virology, 1994

Influenza virus nucleoprotein (NP) is associated with the genome RNA, forming ribonucleoprotein cores. To identify the amino acid sequence involved in RNA binding, we performed Northwestern blot analysis with a set of N- and C-terminal deletion mutants of NP produced in Escherichia coli. The RNA binding region has been mapped between amino acid residues 91 and 188, a stretch of residues that contains a sequence that is not only highly conserved among NPs from A-, B-, and C-type influenza viruses but also similar to the RNA binding domain of a plant virus movement protein.

Several protein regions contribute to determine the nuclear and cytoplasmic localization of the influenza A virus nucleoprotein

The Journal of general virology, 2000

A systematic analysis was carried out to identify the amino acid signals that regulate the nucleo-cytoplasmic transport of the influenza A virus nucleoprotein (NP). The analysis involved determining the intracellular localization of eight deleted recombinant NP proteins and 14 chimeric proteins containing the green fluorescent protein fused to different NP fragments. In addition, the subcellular distribution of NP derivatives that contained specific substitutions at serine-3, which is the major phosphorylation site of the A/Victoria/3/75 NP, were analysed. From the results obtained, it is concluded that the NP contains three signals involved in nuclear accumulation and two regions that cause cytoplasmic accumulation of the fusion proteins. One of the karyophilic signals was located at the N terminus of the protein, and the data obtained suggest that the functionality of this signal can be modified by phosphorylation at serine-3. These findings are discussed in the context of the tra...

Temperature-sensitive lesions in two influenza A viruses defective for replicative transcription disrupt RNA binding by the nucleoprotein

Journal of virology, 1999

The negative-sense segmented RNA genome of influenza virus is transcribed into capped and polyadenylated mRNAs, as well as full-length replicative intermediates (cRNAs). The mechanism that regulates the two forms of transcription remains unclear, although several lines of evidence imply a role for the viral nucleoprotein (NP). In particular, temperature-shift and biochemical analyses of the temperature-sensitive viruses A/WSN/33 ts56 and A/FPV/Rostock/34/Giessen tsG81 containing point mutations within the NP coding region have indicated specific defects in replicative transcription at the nonpermissive temperature. To identify the functional defect, we introduced the relevant mutations into the NP of influenza virus strain A/PR/8/34. Both mutants were temperature sensitive for influenza virus gene expression in transient-transfection experiments but localized and accumulated normally in transfected cells. Similarly, the mutants retained the ability to self-associate and interact wit...

Determination of influenza virus proteins required for genome replication

Journal of Virology, 1990

An artificial vaccinia virus vector-driven replication system for influenza virus RNA has been developed. In this system, a synthetic NS-like gene is replicated and expressed by influenza virus proteins supplied through infection with vaccinia virus recombinant vectors. The minimum subset of influenza virus proteins needed for specific replication and expression of the viral ribonucleoprotein was found to be the three polymerase proteins (PB1, PB2, and PA) and the nucleoprotein.

Influenza virus RNA replication in vitro: synthesis of viral template RNAs and virion RNAs in the absence of an added primer

Journal of virology, 1988

The two steps in influenza virus RNA replication are (i) the synthesis of template RNAs, i.e., full-length copies of the virion RNAs, and (ii) the copying of these template RNAs into new virion RNAs. We prepared nuclear extracts from infected HeLa cells that catalyzed both template RNA and virion RNA synthesis in vitro in the absence of an added primer. Antibody depletion experiments implicated nucleocapsid protein molecules not associated with nucleocapsids in template RNA synthesis for antitermination at the polyadenylation site used during viral mRNA synthesis. Experiments with the WSN influenza virus temperature-sensitive mutant ts56 containing a defect in the nucleocapsid protein proved that the nucleocapsid protein was indeed required for template RNA synthesis both in vivo and in vitro. Nuclear extracts prepared from mutant virus-infected cells synthesized template RNA at the permissive temperature but not at the nonpermissive temperature, whereas the synthesis of mRNA-size t...

Oligomerization paths of the nucleoprotein of influenza A virus

Biochimie, 2012

The influenza viruses contain a segmented, negative strand RNA genome. Each RNA segment is covered by multiple copies of the nucleoprotein (NP) and is associated with the polymerase complex into ribonucleoprotein (RNP) particles. Despite its importance in the virus life cycle, the interactions between the NP and the genome are not well understood. Here, we studied the assembly process of NP-RNA oligomers and analyzed how the oligomeric/monomeric status of RNA-free NP affects RNA binding and oligomerization. Recombinant wild-type NP purified in low salt concentrations and a derived mutant engineered for oligomerization deficiency (R416A) were mainly monomeric in RNA-free solutions as shown by biochemical and electron microscopy techniques. NP monomer formed with RNA a fast 1/1 complex characterized by surface plasmon resonance. In a subsequent and slow process that depended on the RNA length, oligomerization of NP was mediated by RNA binding. In contrast, preparations of wild-type NP purified in high salt concentrations as well as mutant Y148A engineered for deficiency in nucleic acid binding were partly or totally oligomeric in RNA-free solutions. These trimer/tetramer NP oligomers bind directly as oligomers to RNA with a higher affinity than that of the monomers. Both oligomerization routes we characterized could be exploited by cellular or viral factors to modulate or control viral RNA encapsidation by NP.