The Utility of Image-Based Point Clouds for Forest Inventory: A Comparison with Airborne Laser Scanning (original) (raw)

Comparison of Laser and Stereo Optical, SAR and InSAR Point Clouds from Air- and Space-Borne Sources in the Retrieval of Forest Inventory Attributes

Remote Sensing, 2015

It is anticipated that many of the future forest mapping applications will be based on three-dimensional (3D) point clouds. A comparison study was conducted to verify the explanatory power and information contents of several 3D remote sensing data sources on the retrieval of above ground biomass (AGB), stem volume (VOL), basal area (G), basal-area weighted mean diameter (D g) and Lorey's mean height (H g) at the plot level, utilizing the following data: synthetic aperture radar (SAR) Interferometry, SAR radargrammetry, satellite-imagery having stereo viewing capability, airborne laser scanning (ALS) with various densities (0.8-6 pulses/m 2) and aerial stereo imagery. Laser scanning is generally known as the primary source providing a 3D point cloud. However, photogrammetric, radargrammetric and interferometric techniques can be used to produce 3D point clouds from space-and airborne stereo images. Such an image-based point cloud could be utilized in a similar manner as ALS providing that accurate digital terrain model is available. In this study, the performance of these data sources for providing point cloud data was evaluated with 91 sample plots that were established in Evo, southern Finland within a boreal forest zone and surveyed in 2014 for this comparison. The prediction models were built using random forests technique with features derived from each data sources as independent variables and field measurements of forest attributes as response variable. The relative root mean square errors (RMSEs) varied in the ranges of 4.6% (0.97 m)-13.4% (2.83 m) for H g , 11.7% (3.0 cm)-20.6% (5.3 cm) for D g , 14.8% (4.0 m 2 /ha)-25.8% (6.9 m 2 /ha) for G, 15.9% (43.0 m 3 /ha)-31.2% (84.2 m 3 /ha) for VOL and 14.3% (19.2 Mg/ha)-27.5% (37.0 Mg/ha) for AGB, respectively, depending on the data used. Results indicate that ALS data achieved the most accurate estimates for all forest inventory attributes. For image-based 3D data, high-altitude aerial images and WorldView-2 satellite optical image gave similar results for H g and D g , which were only slightly worse than those of ALS data. As expected, spaceborne SAR data produced the worst estimates. WorldView-2 satellite data performed well, achieving accuracy comparable to the one with ALS data for G, VOL and AGB estimation. SAR interferometry data

Comparing Airborne Laser Scanning, and Image-Based Point Clouds by Semi-Global Matching and Enhanced Automatic Terrain Extraction to Estimate Forest Timber Volume

Forests, 2017

Information pertaining to forest timber volume is crucial for sustainable forest management. Remotely-sensed data have been incorporated into operational forest inventories to serve the need for ever more diverse and detailed forest statistics and to produce spatially explicit data products. In this study, data derived from airborne laser scanning and image-based point clouds were compared using three volume estimation methods to aid wall-to-wall mapping of forest timber volume. Estimates of forest height and tree density metrics derived from remotely-sensed data are used as explanatory variables, and forest timber volumes based on sample field plots are used as response variables. When compared to data derived from image-based point clouds, airborne laser scanning produced slightly more accurate estimates of timber volume, with a root mean square error (RMSE) of 26.3% using multiple linear regression. In comparison, RMSEs for volume estimates derived from image-based point clouds were 28.3% and 29.0%, respectively, using Semi-Global Matching and enhanced Automatic Terrain Extraction methods. Multiple linear regression was the best-performing parameter estimation method when compared to k-Nearest Neighbour and Support Vector Machine. In many countries, aerial imagery is acquired and updated on regular cycles of 1-5 years when compared to more costly, once-off airborne laser scanning surveys. This study demonstrates point clouds generated from such aerial imagery can be used to enhance the estimation of forest parameters at a stand and forest compartment level-scale using small area estimation methods while at the same time achieving sampling error reduction and improving accuracy at the forest enterprise-level scale.

Advances in Forest Inventory Using Airborne Laser Scanning

Remote Sensing, 2012

We present two improvements for laser-based forest inventory. The first improvement is based on using last pulse data for tree detection. When trees overlap, the surface model between the trees corresponding to the first pulse stays high, whereas the corresponding model from the last pulse results in a drop in elevation, due to its better penetration between the trees. This drop in elevation can be used for separating trees. In a test carried out in Evo, Southern Finland, we used 292 forests plots consisting of more than 5,500 trees and airborne laser scanning (ALS) data comprised of 12.7 emitted laser pulses per m 2 . With last pulse data, an improvement of 6% for individual tree detection was obtained when compared to using first pulse data. The improvement increased with an increasing number of stems per plot and with decreasing diameter breast height (DBH). The results confirm that there is also substantial information for tree detection in last pulse data. The second improvement is based on the use of individual tree-based features in addition to the statistical point height metrics in area-based prediction of forest variables. The commonly-used ALS point height metrics and individual tree-based features were OPEN ACCESS Remote Sens. 2012, 4 1191 fused into the non-parametric estimation of forest variables. By using only four individual tree-based features, stem volume estimation improved when compared to the use of statistical point height metrics. For DBH estimation, the point height metrics and individual tree-based features complemented each other. Predictions were validated at plot level.

Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update

Canadian Journal of Remote Sensing, 2013

Airborne laser scanning (ALS) has demonstrated utility for forestry applications and has renewed interest in other forms of remotely sensed data, especially those that capture three-dimensional (3-D) forest characteristics. One such data source results from the advanced processing of high spatial resolution digital stereo imagery (DSI) to generate 3-D point clouds. From the derived point cloud, a digital surface model and forest vertical information with similarities to ALS can be generated. A key consideration is that when developing forestry related products such as a canopy height model (CHM), a high spatial resolution digital terrain model (DTM), typically from ALS, is required to normalize DSI elevations to heights above ground. In this paper we report on our investigations into the use of DSI-derived vertical information for capturing variations in forest structure and compare these results to those acquired using ALS. An ALS-derived DTM was used to provide the spatially detailed ground surface elevations to normalize DSI-derived heights. Similar metrics were calculated from the vertical information provided by both DSI and ALS. Comparisons revealed that ALS metrics provided a more detailed characterization of the canopy surface including canopy openings. Both DSI and ALS metrics had similar levels of correlation with forest structural attributes (e.g., height, volume, and biomass). DSI-based models predicted height, diameter, basal area, stem volume, and biomass with root mean square (RMS) accuracies of 11.2%, 21.7%, 23.6%, 24.5%, and 23.7%, respectively. The respective accuracies for the ALS-based predictions were 7.8%, 19.1%, 17.8%, 17.9%, and 17.5%. Change detection between ALS-derived CHM (time 1) and DSI-derived CHM (time 2) provided change estimates that demonstrated good agreement (r 0 0.71) with two-date, ALS only, change outputs. For the single-layered, even-aged stands under investigation in this study, the DSI-derived vertical information is an appropriate and cost-effective data source for estimating and updating forest information. The accuracy of DSI information is based on a capability to measure the height of the upper canopy envelope with performance analogous to ALS. Forest attributes that are well captured and subsequently modeled from height metrics are best suited to estimation from DSI metrics, whereas ALS is more suitable for capturing stand density. Further investigation is required to better understand the performance of DSI-derived height products in more complex forest environments. Furthermore, the difference in variance captured between ALS and DSI-derived CHM also needs to be better understood in the context of change detection and inventory update considerations.

Comparing image-based point clouds and airborne laser scanning data for estimating forest heights

iForest - Biogeosciences and Forestry, 2017

Accurate and updated knowledge of forest tree heights is fundamental in the context of forest management. However, measuring canopy height over large forest areas using traditional inventory techniques is laborious, time-consuming and excessively expensive. In this study, image-based point clouds produced from stereo aerial photographs (AP) were used to estimate forest height, and compared to Airborne Laser Scanning (ALS) data. We generated image-based Canopy Height Models (CHM) using different image-matching algorithms (SGM: Semi-Global Matching; eATE: enhanced Automatic Terrain Extraction), which were compared with a pure ALS-derived CHM. Additionally, plotlevel height and density metrics were extracted from CHMs and used as explanatory variables for predicting the Lorey's mean height (LMH), which was measured at 296 reference points on the ground. CHMSGM and CHMALS showed similar results in predicting LMH at sample plot locations (RMSE% = 8.54 vs. 7.92, respectively), while CHMeATE had lower accuracy (RMSE% = 13.23). Similarly, CHMSGM showed a lower normalized median absolute deviation (NMAD) from CHMALS (0.68 m) compared to CHMeATE (1.1 m). Our study revealed that image-based point clouds using SGM in the presence of high-resolution ALSderived digital terrain model (DTM) provide comparable results with ALS data, while the performance of image-based point clouds using eATE is poorer than ALS for forest height estimation. The findings of this study provide a viable and cost-effective option for assessing height-related forest structural parameters. The proposed methodology can be usefully applied in all those countries where AP are updated on a regular basis and pre-existing historical ALS-derived DTMs are available.

The use of terrestrial LiDAR for enhance forest inventory

2017

Terrestrial LiDAR (TLidar) is an emerging technology that has high potential for forestry applications. It provides a detailed three‐dimensional (3D) point cloud representation of forest structure at tree‐ and plot‐level from which a wide range of forest attributes could be extracted with appropriate methods. Consequently, TLidar potentially offers the opportunity to expand on the estimation of new attributes beyond what is currently measured with conventional forest inventory. The presentation will describe how the use of TLiDAR data can enhance forest inventory. More specifically it will describe three novel sets of algorithms involving the use of TLiDAR data. The first set of algorithms provides information on forest plots that can routinely be extracted from TLiDAR using existing algorithms currently available as open source. The set of attributes includes stem diameter at breast height, tree height, map of tree position, digital terrain model and canopy height model. The second...

Resolution dependence in an area-based approach to forest inventory with airborne laser scanning

Remote Sensing of Environment

In an Area Based Approach (ABA) to forest inventories using Airborne Laser Scanning (ALS) data, the sample plot size may vary or the cell size may differ from the plot size. Although this resolution mismatch may cause bias and increase in prediction error, it has not been thoroughly studied. The aim of this study was to clarify the meaning of resolution dependence in ABA, and to further identify its causal factors and quantify their effects. In general, a number of factors contribute to resolution dependence in ABA forest inventories, including the varying point density of the ALS data, the type of response variable, how the predictor variables are computed, and the properties of the prediction model. For quantification, we used field plots with mapped tree locations, which enabled the generation of different sized sample plots inside a larger plot. Plot level above ground biomass (AGB) was the response variable employed in all the models. The error rate seemed to increase when the prediction plots were larger than the fitting plots, and vice versa. The maximum BIAS was 1.50% and the maximum change of RMSE compared to its value in native resolution was 0.97% when there was a 4-fold difference in resolution. This indicates that the resolution effect is small in most real-world use cases, however, resolution effect should be carefully considered in ALS-assisted large area inventories that target unbiased estimates of forest parameters. 1.2. Area-based approach to forest inventory Forest inventories employing Airborne Laser Scanning (ALS) data have become common in many countries (Nilsson et al., 2017). The ALS-based forest inventory methods (Hyyppä et al., 2008) can be divided into two groups: the area-based approach (ABA) (Means et al.,

Comparison of 3D Point Clouds Obtained by Terrestrial Laser Scanning and Personal Laser Scanning on Forest Inventory Sample Plots

Data, 2020

In forest inventory, trees are usually measured using handheld instruments; among the most relevant are calipers, inclinometers, ultrasonic devices, and laser range finders. Traditional forest inventory has been redesigned since modern laser scanner technology became available. Laser scanners generate massive data in the form of 3D point clouds. We have developed a novel methodology to provide estimates of the tree positions, stem diameters, and tree heights from these 3D point clouds. This dataset was made publicly accessible to test new software routines for the automatic measurement of forest trees using laser scanner data. Benchmark studies with performance tests of different algorithms are welcome. The dataset contains co-registered raw 3D point-cloud data collected on 20 forest inventory sample plots in Austria. The data were collected by two different laser scanning systems: (1) A mobile personal laser scanner (PLS) (ZEB Horizon, GeoSLAM Ltd., Nottingham, UK) and (2) a static...

Estimating Changes in Forest Attributes and Enhancing Growth Projections: a Review of Existing Approaches and Future Directions Using Airborne 3D Point Cloud Data

Current Forestry Reports

Purpose of Review The increasing availability of three-dimensional point clouds, including both airborne laser scanning and digital aerial photogrammetry, allow for the derivation of forest inventory information with a high level of attribute accuracy and spatial detail. When available at two points in time, point cloud datasets offer a rich source of information for detailed analysis of change in forest structure. Recent Findings Existing research across a broad range of forest types has demonstrated that those analyses can be performed using different approaches, levels of detail, or source data. By reviewing the relevant findings, we highlight the potential that bi- and multi-temporal point clouds have for enhanced analysis of forest growth. We divide the existing approaches into two broad categories— – approaches that focus on estimating change based on predictions of two or more forest inventory attributes over time, and approaches for forecasting forest inventory attributes. W...