Model reduction for dynamical systems with quadratic output (original) (raw)

2012, International Journal for Numerical Methods in Engineering

Finite element models for structures and vibrations often lead to second order dynamical systems with large sparse matrices. For large-scale finite element models, the computation of the frequency response function and the structural response to dynamic loads may present a considerable computational cost. Padé via Krylov methods are widely used and are appreciated projection-based model reduction techniques for linear dynamical systems with linear output. This paper extends the framework of the Krylov methods to systems with a quadratic output arising in linear quadratic optimal control or random vibration problems. Three different two-sided model reduction approaches are formulated based on the Krylov methods. For all methods, the control (or right) Krylov space is the same. The difference between the approaches lies, thus, in the choice of the observation (or left) Krylov space. The algorithms and theory are developed for the particularly important case of structural damping. We also give numerical examples for large-scale systems corresponding to the forced vibration of a simply supported plate and of an existing footbridge. In this case, a block form of the Padé via Krylov method is used. origin (also called moments) correspond with the exact output function. Padé via Krylov methods are therefore also called moment matching methods. Krylov methods have been used successfully for the computation of frequency response functions with proportional [8] and nonproportional damping . An extensive overview of model reduction methods with a large number of references are found in recent books by Antoulas and Benner et al. .

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.