Backbone amide dynamics studies of apo-L75F-TrpR, a temperature sensitive mutant of the tryptophan repressor protein (TrpR): comparison with the 15N NMR … (original) (raw)
Abstract
Backbone amide dynamics studies were conducted on a temperature-sensitive mutant (L75F-TrpR) of the tryptophan repressor protein (TrpR) of Escherichia coli in its apo (i.e., no L-tryptophan corepressorbound) form. The 15 N NMR relaxation profiles of apo-L75F-TrpR were analyzed and compared to those of wild-type (WT) and super-repressor mutant (A77V) TrpR proteins, also in their apo forms. The 15 N NMR relaxation data ( 15 N-T 1 , 15 N-T 2 , and heteronuclear 15 N-{ 1 H}-nOe) recorded on all three aporepressors at a magnetic field strength of 600 MHz ( 1 H Larmor frequency) were analyzed to extract dynamics parameters, including diffusion tensor ratios (D ) /D^), correlation times (τ m ) for overall reorientations of the proteins in solution, reduced spectral density terms [J eff (0), J(0.87ω H ), J(ω N )], and generalized order parameters (S 2 ), which report on protein internal motions on the picosecond to nanosecond and slower microsecond to millisecond chemical exchange time scales. Our results indicate that all three aporepressors exhibit comparable D ) /D^ratios and characteristic time constants, τ m , for overall global reorientation, indicating that in solution, all three apoproteins display very similar overall shape, structure, and rotational diffusion properties. Comparison of 15 † multipulse sequence; CSA, chemical shift anisotropy; DIPSI, decoupling in the presence of scalar interactions; HSQC, heteronuclear single-quantum coherence spectroscopy; HTH, helix-turn-helix motif; IPTG, isopropyl β-thiogalactoside; 5-MT, 5-methyltryptophan; L-Trp, L-tryptophan; NMR, nuclear magnetic resonance; nOe, nuclear Overhauser effect; TrpR, tryptophan repressor; apo-WT-TrpR, wild-type apo-TrpR repressor; apo-L75F-TrpR, L75F mutant apo-TrpR repressor; A77V-TrpR, A77V mutant apo-TrpR repressor; ts, temperature-sensitive; WALTZ, wideband alternative-phase low-power technique for zero residual splitting.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (77)
- Joachimiak, A., Kelley, R. L., Gunsalus, R. P., Yanofsky, C., and Sigler, P. B. (1983) Purification and characterization of trp apore- pressor. Proc. Natl. Acad. Sci. U.S.A. 80, 668-672.
- Sigler, P. B. (1992) Transcriptional Regulation, Cold Spring Harbor Laboratory Press, Plainview, NY.
- Klig, L. S., Carey, J., and Janofsky, C. (1988) trp repressor interac- tions with the trp aroH and trpR operators: Comparison of repressor binding in vitro and repression in vivo. J. Mol. Biol. 202, 769-777.
- Gunsalus, R. P., and Yanofsky, C. (1980) Nucleotide sequence and expression of Escherichia coli trpR, the structural gene for the trp aporepressor. Proc. Natl. Acad. Sci. U.S.A. 77, 7117-7121.
- Zurawski, G., Gunsalus, R. P., Brown, K. D., and Yanofsky, C. (1981) Structure and regulation of aroH, the structural gene for the tryptophan-repressible 3-deoxy-D-arabino-heptulosonic acid-7-phos- phate synthetase of Escherichia coli. J. Mol. Biol. 145, 47-57.
- Sarsero, J. P., Wookey, P. J., and Pittard, A. J. (1991) Regulation and expression of Escherichia coli K-12 mtr gene by TyrR and trp repressor. J. Bacteriol. 173, 4133-4143.
- Carey, J., Lewis, D. E., Lavoie, T. A., and Yang, J. (1991) How does trp repressor bind to its operator? J. Biol. Chem. 266, 24509-24513.
- Lavoie, T. A., and Carey, J. (1994) Adaptability and specificity in DNA binding by trp repressor. Nucleic Acid Mol. Biol. 8, 185-196.
- Marmorstein, R. Q., Joachimiak, A., Sprinzl, M., and Sigler, P. B. (1987) The structural basis for the interaction between L-tryptophan and the Escherichia coli trp aporepressor. J. Biol. Chem. 262, 4922- 4927.
- Luisi, B. F., and Sigler, P. B. (1990) The stereochemistry and biochemistry of the trp repressor-operator complex. Biochim. Bio- phys. Acta 1048, 113-126.
- Yang, J., Gunasekera, A., Lavoie, T. A., Jin, L., Lewis, D. E. A., and Carey, J. (1996) In vivo and in vitro studies of TrpR-DNA interac- tions. J. Mol. Biol. 258, 37-52.
- Schevitz, R. W., Otwinowski, Z., Joachimiak, A., Lawson, C. L., and Sigler, P. B. (1985) The three-dimensional structure of trp repressor. Nature 317, 782-786.
- Zhang, R. G., Joachimiak, A., Lawson, C. L., Schevitz, R. W., Otwinowski, Z., and Sigler, P. B. (1987) The crystal structure of trp aporepressor at 1.8 A ˚shows how binding tryptophan enhances DNA affinity. Nature 327, 591-597.
- Otwinowski, Z., Schevitz, R. W., Zhang, R. G., Lawson, C. L., Joachimiak, A., Marmorstein, R. Q., Luisi, B. F., and Sigler, P. B. (1988) Crystal structure of trp repressor/operator complex at atomic resolution. Nature 335, 321-329.
- Arrowsmith, C., Pachter, R., Altman, R., and Jardetzky, O. (1991) The solution structures of Escherichia coli trp repressor and trp aporepressor at an intermediate resolution. Eur. J. Biochem. 202, 53-66.
- Zhao, D., Arrowsmith, C. H., Jia, X., and Jardetzky, O. (1993) Refined solution structures of the Escherichia coli trp holo-and aporepressor. J. Mol. Biol. 229, 735-746.
- Finucane, M. D., and Jardetzky, O. (1995) Mechanism of hydrogen- deuterium exchange in trp repressor studied by 1 H-15 N NMR. J. Mol. Biol. 253, 576-589.
- Gryk, M. R., Finucane, M. D., Zheng, Z., and Jardetzky, O. (1995) Solution dynamics of the trp repressor: A study of amide proton exchange by T1 relaxation. J. Mol. Biol. 246, 618-627.
- Zheng, Z., Czaplicki, J., and Jardetzky, O. (1995) Backbone dynamics of trp repressor studied by 15 N NMR relaxation. Biochemistry 34, 5212-5223.
- Czaplicki, J., Arrowsmith, C., and Jardetzky, O. (1991) Segmental differences in the stability of the trp repressor peptide backbone. J. Biomol. NMR 1, 349-361.
- Zhang, H., Zhao, D., Revington, M., Lee, W., Jia, X., Arrowsmith, C., and Jardetzky, O. (1994) The solution structures of the trp repressor-operator DNA complex. J. Mol. Biol. 238, 592-614.
- Bae, S. J., Chou, W. Y., Matthews, K. S., and Sturtevant, J. M. (1988) Tryptophan repressor of E. coli shows unusual thermal stability. Proc. Natl. Acad. Sci. U.S.A. 85, 6731-6732.
- Gittelman, M. S., and Matthews, C. R. (1990) Folding and stability of trp aporepressor from Escherichia coli. Biochemistry 29, 7011-7020.
- Schmitt, T. H., Zheng, Z., and Jardetzky, O. (1995) Dynamics of tryptophan binding to Escherichia coli Trp repressor wild type and AV77 mutant: An NMR study. Biochemistry 34, 13183-13189.
- Gryk, M. R., Jardetzky, O., Klig, L. S., and Yanofsky, C. (1996) Flexibility of DNA binding domain of trp repressor required for recognition of different operator sequences. Protein Sci. 5, 1195-1197.
- Chou, W. Y., and Matthews, K. S. (1989) Serine to cysteine mutations in trp repressor protein alter tryptophan and operator binding. J. Biol. Chem. 264, 18314-18319.
- Bass, S., Sorrells, V., and Youderian, P. (1988) Mutant Trp repressors with new DNA-binding specificities. Science 242, 240-245.
- Kelley, R. L., and Yanofsky, C. (1985) Mutational studies with the trp repressor of Escherichia coli support the helix-turn-helix model of repressor recognition of operator DNA. Proc. Natl. Acad. Sci. U.S.A. 82, 483-487.
- Gryk, M. R., and Jardetzky, O. (1996) AV77 hinge mutation stabilizes the helix-turn-helix domain of trp repressor. J. Mol. Biol. 255, 204- 214.
- Jin, L., Fukayama, J. W., Pelczer, I., and Carey, J. (1999) Long-range effects on dynamics in a temperature-sensitive mutant of trp repres- sor. J. Mol. Biol. 285, 361-378.
- Marmorstein, R. Q., and Sigler, P. B. (1989) Stereochemical effects of L-tryptophan and its analogues on trp repressor's affinity for opera- tor-DNA. J. Biol. Chem. 264, 9149-9154.
- Lawson, C. L. (1996) Structural consequences of two methyl additions in the E. coli trp repressor L-tryptophan binding pocket. In Proceed- ings of the 9th Convention in Biomolecular Stereodynamics (Sarma, R. H., and Sarma, M. H., Ed.) pp 83-90, Adenine Press, Schenectady, NY.
- Bennett, G. N., and Yanofsky, C. (1978) Sequence analysis of operator constitutive mutants of the tryptophan operon of Escheri- chia coli. J. Mol. Biol. 121, 179-192.
- Tyler, R., Pelczer, I., Carey, J., and Copie, V. (2002) Three-dimen- sional solution NMR structure of Apo-L75F-TrpR, a temperature- sensitive mutant of the tryptophan repressor protein. Biochemistry 41, 11954-11962.
- Kay, L. E. (1998) Protein dynamics from NMR. Biochem. Cell Biol. 76, 145-152.
- Palmer, A. G., Kroenke, C. D., and Loria, J. P. (2001) NMR methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 339, 204-238.
- Palmer, A. G. (2001) NMR probes of molecular dynamics: Overview and comparison with other techniques. Annu. Rev. Biophys. Biomol. Struct. 30, 129-155.
- Wand, J. A. (2001) Dynamic activation of protein function: A view emerging from NMR spectroscopy. Nat. Struct. Biol. 8, 926-931.
- Lee, A. L., Flynn, P. F., and Wand, A. J. (1999) Comparison of H-2 and C-13 NMR relaxation techniques for the study of protein methyl group dynamics in solution. J. Am. Chem. Soc. 121, 2891-2902.
- Paluh, J. L., and Yanofsky, C. (1986) High level production and rapid purification of the E. coli trp repressor. Nucleic Acids Res. 14, 7851- 7860.
- Bodenhausen, G., and Ruben, D. J. (1980) Natural Abundance Nitrogen-15 NMR by Enhanced Heteronuclear Spectroscopy. Chem. Phys. Lett. 69, 185-189.
- Shaka, A. J., Keeler, J., and Freeman, R. (1983) Evaluation of A New Broad-Band Decoupling Sequence: Waltz-16. J. Magn. Reson. 53, 313-340.
- Grzesiek, S., and Bax, A. (1992) Correlating Backbone Amide and Side-Chain Resonances in Larger Proteins by Multiple Relayed Triple Resonance NMR. J. Am. Chem. Soc. 114, 6291-6293.
- Kay, L. E., Ikura, M., Tschudin, R., and Bax, A. (1990) Three- dimensional triple-resonance NMR spectroscopy of isotopically en- riched proteins. J. Magn. Reson. 89, 496-514.
- Wittekind, M., and Mueller, L. (1993) HNCACB, a High-Sensitivity 3D NMR Experiment to Correlate Amide-Proton and Nitrogen Resonances with the R-and β-Carbon Resonances in Proteins. J. Magn. Reson., Ser. B 101, 201-205.
- Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: A Multidimensional Spectral Processing System Based on Unix Pipes. J. Biomol. NMR 6, 277-293.
- Goddard, T. D., and Kneller, D. G. (2002) SPARKY 3, University of California, San Francisco.
- Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W., and Bax, A. (1992) Backbone dynamics of calmodulin studied by 15 N relaxation using inverse detected two-dimensional NMR spectroscopy: The central helix is flexible. Biochemistry 31, 5269-5278.
- Kay, L. E., Torchia, D. A., and Bax, A. (1989) Backbone dynamics of proteins as studied by 15 N inverse detected heteronuclear NMR spectroscopy: Application to staphylococcal nuclease. Biochemistry 28, 8972-8979.
- Grzesiek, S., and Bax, A. (1993) The Importance of Not Saturating H 2 O in Protein NMR. J. Am. Chem. Soc. 115, 12593-12594.
- Carr, H. Y., and Purcell, E. M. (1954) Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 94, 630.
- Meiboom, S., and Gill, D. (1958) Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Rev. Sci. Instrum. 29, 688-691.
- Palmer, A. G., Rance, M., and Wright, P. E. (1991) Intramolecular motions of a zinc finger DNA-binding domain from Xfin character- ized by proton-detected natural abundance 13 C heteronuclear NMR spectroscopy. J. Am. Chem. Soc. 113, 4371-4380.
- Nicholson, L. K., Kay, L. E., Baldisseri, D. M., Arango, J., Young, P. E., Bax, A., and Torchia, D. A. (1992) Dynamics of methyl groups in proteins as studied by proton-detected 13 C NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease. Bio- chemistry 31, 5253-5263.
- Bracken, C., Carr, P. A., Cavanagh, J., and Palmer, A. G., III (1999) Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: Implications for the entropy of association with DNA. J. Mol. Biol. 285, 2133-2146.
- Bhattacharya, N., Yi, M., Zhou, H.-X., and Logan, T. M. (2007) Backbone dynamics in an intramolecular prolylpeptide-SH3 complex from the diphteria toxin repressor, DtxR. J. Mol. Biol. 374, 977-992.
- Farrow, N. A., Zhang, O. W., Szabo, A., Torchia, D. A., and Kay, L. E. (1995) Spectral Density-Function Mapping Using N-15 Relaxa- tion Data Exclusively. J. Biomol. NMR 6, 153-162.
- Blumenschein, T. M. A., Stone, D. B., Fletterick, R. J., Mendelson, R. A., and Sykes, B. A. (2006) Dynamics of the C-terminal region of TnI in the troponin complex in solution. Biophys. J. 90, 2436-2444.
- Cole, R., and Loria, J. P. (2003) FAST-model free: A program for rapid automated analysis of solution NMR spin-relaxation data. J. Biomol. NMR 26, 203-213.
- Palmer, A. (1998) ModelFree, version 4.0. http://cpmcnet.columbia.edu/ dept/gsas/biochem/labs/palmer.
- Lipari, G., and Szabo, A. (1982) Model-Free Approach to the Interpretation of Nuclear Magnetic-Resonance Relaxation in Macro- molecules. 1. Theory and Range of Validity. J. Am. Chem. Soc. 104, 4546-4559.
- Lipari, G., and Szabo, A. (1982) Model-Free Approach to the Interpretation of Nuclear Magnetic-Resonance Relaxation in Macro- molecules. 2. Analysis of Experimental Results. J. Am. Chem. Soc. 104, 4559-4570.
- Pawley, N. H., Wang, C., Koide, S., and Nicholson, L. K. (2001) An improved method for distinguishing between anisotropic tumbling and chemical exchange in analysis of 15 N relaxation parameters. J. Biomol. NMR 20, 149-165.
- Mandel, A. M., Akke, M., and Palmer, A. G. (1995) Backbone dynamics of Escherichia coli ribonuclease HI: Correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144-163.
- Peng, J. W., and Wagner, G. (1992) Mapping of the Spectral Densities of N-H Bond Motions in Eglin-C Using Heteronuclear Relaxation Experiments. Biochemistry 31, 8571-8586.
- Peng, J. W., and Wagner, G. (1992) Mapping of Spectral Density- Functions Using Heteronuclear NMR Relaxation Measurements. J. Magn. Reson. 98, 308-332.
- Farrow, N. A., Muhandiram, R., Singer, A. U., Pascal, S. M., Kay, C. M., Gish, G., Shoelson, S. E., Pawson, T., Forman-Kay, J. D., and Kay, L. E. (1994) Backbone dynamics of a free and phosphopeptide- complexed Src homology 2 domain studied by 15 N NMR relaxation. Biochemistry 33, 5984-6003.
- Formaneck, M. S., Ma, L., and Cui, Q. (2006) Reconciling the "old" and "new" view of protein allostery: A molecular simulation study of chemotaxis Y protein (chey). Proteins: Struct., Funct., Bioinf. 63, 846- 867.
- Karplus, M., and Kuryan, J. (2005) Molecular dynamics and protein function. Proc. Natl. Acad. Sci. U.S.A. 102, 6679-6685.
- Kern, D., and Zuiderweg, E. R. P. (2003) The role of dynamics in allosteric regulation. Curr. Opin. Struct. Biol. 13, 748-757.
- Popovych, N., Sun, S., Ebright, R. H., and Kalodimos, C. G. (2006) Dynamically driven protein allostery. Nat. Struct. Biol. 13, 831-838.
- Clarkson, M. W., Gilmore, S. A., Edgell, M. H., and Lee, A. L. (2006) Dynamic coupling and allosteric behavior in a nonallosteric protein. Biochemistry 45, 7693-7699.
- Finucane, M. D., and Jardetzky, O. (2003) Surface plasmon reso- nance studies of wild-type and AV77 tryptophan repressor resolve ambiguities in super-repressor activity. Protein Sci. 12, 1613-1620.
- Reedstrom, R. J., and Royer, C. A. (1995) Evidence for coupling of folding and function in trp repressor: Physical characterization of the superrepressor mutant AV77. J. Mol. Biol. 253, 266-276.
- Reedstrom, R. J., Martin, K. S., Vangala, S., Mahoney, S., Wilker, E. W., and Royer, C. A. (1996) Characterization of charge change super-repressor mutants of trp repressor: Effects on oligomerization conformation, ligation and stability. J. Mol. Biol. 264, 32-45.
- Grillo, A. O., and Royer, C. A. (2000) The basis for the super- repressor phenotypes of the AV77 and EK18 mutants of trp repressor. J. Mol. Biol. 295, 17-28.
- Carey, J. (1988) Gel Retardation at Low pH Resolves trp Repressor- DNA Complexes for Quantitative Study. Proc. Natl. Acad. Sci. U.S.A. 85, 975-979.