A De Novo Designed Metalloenzyme for the Hydration of CO 2 (original) (raw)

A Designed Functional Metalloenzyme that Reduces O(2) to H(2)O with Over One Thousand Turnovers

Angewandte Chemie International Edition, 2012

Rational design of functional enzymes with high turnovers is a significant challenge, especially those with complex active site and difficult reactions, such as in respiratory oxidases. Introducing 2 His and 1 Tyr into myoglobin resulted in designed enzymes that reduce O 2 to H 2 O with > 1000 turnovers and minimal release of reactive oxygen species. This also showed that presence and positioning of Tyr, not Cu, are critical for activity.

Artificial metalloenzymes: proteins as hosts for enantioselective catalysis

Chemical Society Reviews, 2005

Enantioselective catalysis is one of the most efficient ways to synthesize high-added-value enantiomerically pure organic compounds. As the subtle details which govern enantioselection cannot be reliably predicted or computed, catalysis relies more and more on a combinatorial approach. Biocatalysis offers an attractive, and often complementary, alternative for the synthesis of enantiopure products. From a combinatorial perspective, the potential of directed evolution techniques in optimizing an enzyme's selectivity is unrivaled. In this review, attention is focused on the construction of artificial metalloenzymes for enantioselective catalytic applications. Such systems are shown to combine properties of both homogeneous and enzymatic kingdoms. This review also includes our recent research results and implications in the development of new semisynthetic metalloproteins for the enantioselective hydrogenation of N-protected dehydroamino acids.

Minimalist De Novo Design of an Artificial Enzyme

ACS Omega

We employed a reductionist approach in designing the first heterochiral tripeptide that forms a robust heterogeneous short peptide catalyst similar to the "histidine brace" active site of lytic polysaccharide monooxygenases. The histidine brace is a conserved divalent copper ion-binding motif that comprises two histidine side chains and an amino group to create the T-shaped 3N geometry at the reaction center. The geometry parameters, including a large twist angle (73°) between the two imidazole rings of the model complex, are identical to those of native lytic polysaccharide monooxygenases (72.61°). The complex was synthesized and characterized as a structural and functional mimic of the histidine brace. UV−vis, vis-circular dichroism, Raman, and electron paramagnetic resonance spectroscopic analyses suggest a distorted square-pyramidal geometry with a 3N coordination at pH 7. Solution-and solid-state NMR results further confirm the 3N coordination in the copper center of the complex. The complex is pH-dependent and could catalyze the oxidation of benzyl alcohol in water to benzaldehyde with yields up to 82% in 3 h at pH 7 and above at 40°C. The catalyst achieved 100% selectivity for benzaldehyde compared to conventional copper catalysis. The design of such a minimalist building block for functional soft materials with a pH switch can be a stepping stone in addressing needs for a cleaner and sustainable future catalyst.

Design of artificial metalloenzymes

Applied Organometallic Chemistry, 2005

Homogeneous and enzymatic catalysis offer complementary means to generate enantiomerically pure compounds. For this reason, in a biomimetic spirit, efforts are currently under way in different groups to design artificial enzymes. Two complementary strategies are possible to incorporate active organometallic catalyst precursors into a protein environment. The first strategy utilizes covalent anchoring of the organometallic complexes into the protein environment. The second strategy relies on the use of non-covalent incorporation of the organometallic precursor into the protein. In this review, attention is focused on the use of semisynthetic enzymes to produce efficient enantioselective hybrid catalysts for a given reaction. This article also includes our recent research results and implications in developing the biotin-avidin technology to localize the biotinylated organometallic catalyst precursor within a well-defined protein environment.

From Unnatural Amino Acid Incorporation to Artificial Metalloenzymes

2016

Studies and development of artificial metalloenzymes have developed into vibrant areas of research. It is expected that artificial metalloenzymes will be able to combine the best of enzymatic and homogenous catalysis, that is, a broad catalytic scope, high selectivity and activity under mild, aqueous conditions. Artificial metalloenzyme consist of a host protein and a newly introduced artificial metal center. The host protein merely functions as ligand controlling selectivity and augmenting reactivity, while the metal center determines the reactivity. Potential applications range from catalytic production of fine chemicals and feedstock to electron transfer utilization (e.g. fuel cells, water splitting) and medical research (e.g. metabolic screening). Particularly modern asymmetric synthesis is expected to benefit from a successful combination of the power of biocatalysis (substrate conversion via multi-step or cascade reactions, potentially immortal catalyst, unparalleled selectivity and optimization by evolutionary methods) with the versatility and mechanism based optimization methods of homogeneous catalysis. However, so far systems are either limited in structural diversity (biotin-avidin technology) or fail to deliver the selectivities expected (covalent approaches). This thesis explores a novel strategy based on the site-selective incorporation of unnatural, metal binding amino acids into a host protein. The unnatural amino acids can either serve directly as metal binding centers can be used as anchoring points for artificial metallo-cofactors. The identification expression, purification and modification of a suitable protein scaffolds

Directed evolution of artificial metalloenzymes for in vivo metathesis

Nature, 2016

The field of biocatalysis has advanced from harnessing natural enzymes to using directed evolution to obtain new biocatalysts with tailor-made functions. Several tools have recently been developed to expand the natural enzymatic repertoire with abiotic reactions. For example, artificial metalloenzymes, which combine the versatile reaction scope of transition metals with the beneficial catalytic features of enzymes, offer an attractive means to engineer new reactions. Three complementary strategies exist: repurposing natural metalloenzymes for abiotic transformations; in silico metalloenzyme (re-)design; and incorporation of abiotic cofactors into proteins. The third strategy offers the opportunity to design a wide variety of artificial metalloenzymes for non-natural reactions. However, many metal cofactors are inhibited by cellular components and therefore require purification of the scaffold protein. This limits the throughput of genetic optimization schemes applied to artificial m...

αRep A3: A Versatile Artificial Scaffold for Metalloenzyme Design

Chemistry: A European Journal, 2017

αRep is a new family of artificial proteins based on a thermostable alpha-helical repeated motif. One of its members, αRep A3, forms a stable homo-dimer with a wide cleft that is able to receive metal complexes and thus appears as suitable for generating new artificial biocatalysts. Based on the crystal structure of αRep A3, two positions (F119 and Y26) were chosen and changed independently into cysteine residues. A phenanthroline ligand was covalently attached to the unique cysteine of each protein variant and the corresponding biohybrids were purified and characterized. Once mutated and coupled to phenanthroline, the protein remained folded and dimeric. Copper(II) was bound specifically by the two biohybrids with two different binding modes and, in addition, the holo biohybrid A3F119NPH was found to be able to catalyze enantioselectively the Diels-Alder (D-A) cycloaddition with up to 62% ee. This study validates the choice of the αRep A3 dimer as a protein scaffold and provides a new promising route for the design and production of new enantioselective biohybrids based on entirely artificial proteins issued from a highly diverse library.

A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase

ACS Central Science

Artificial metalloenzymes result from anchoring a metal cofactor within a host protein. Such hybrid catalysts combine the selectivity and specificity of enzymes with the versatility of (abiotic) transition metals to catalyze new-to-nature reactions in an evolvable scaffold. With the aim of improving the localization of an arylsulfonamide-bearing iridium-pianostool catalyst within human carbonic anhydrase II (hCAII) for the enantioselective reduction of prochiral imines, we introduced a covalent linkage between the host and the guest. Herein, we show that a judiciously positioned cysteine residue reacts with a p-nitropicolinamide ligand bound to iridium to afford an additional sulfonamide covalent linkage. Three rounds of directed evolution, performed on the dually anchored cofactor, led to improved activity and selectivity for the enantioselective reduction of harmaline (up to 97% ee (R) and >350 turnovers on a preparative scale). To evaluate the substrate scope, the best hits of each generation were tested with eight substrates. X-ray analysis, carried out at various stages of the evolutionary trajectory, was used to scrutinize (i) the nature of the covalent linkage between the cofactor and the host as well as (ii) the remodeling of the substrate-binding pocket.