Computational analysis of thermally loaded duplex stainless steels: the role of the free surfaces and the microstructure (original) (raw)

Mechanical And Thermal Stresses In Functionally Graded Cylinders

2014

In this study, thermal elastic stress distribution occurred on long hollow cylinders made of functionally graded material (FGM) was analytically defined under thermal, mechanical and thermo mechanical loads. In closed form solutions for elastic stresses and displacements are obtained analytically by using the infinitesimal deformation theory of elasticity. It was assumed that elasticity modulus, thermal expansion coefficient and density of cylinder materials could change in terms of an exponential function as for that Poisson's ratio was constant. A gradient parameter n is chosen between - 1 and 1. When n equals to zero, the disc becomes isotropic. Circumferential, radial and longitudinal stresses in the FGMs cylinders are depicted in the figures. As a result, the gradient parameters have great effects on the stress systems of FGMs cylinders.

Stress Analysis for Cylinder Made of FGM and Subjected to Thermo-Mechanical Loadings

Metals

Functionally-graded materials (FGM) have recently been widely used. Furthermore, FGM are widely recommended in cylinder design. This study represents a mathematical analysis of the stresses and strains of an FGM cylinder. The paper is interested in introducing a stress analysis to an FGM cylinder where its properties vary exponentially in the r-direction. Firstly, a benchwork has been done and compared with recent works in the same field. The radial stress, the hoop stress, and the longitudinal stress on a cylinder under mechanical and thermal loading have been theoretically derived. In addition, a finite element analysis has been investigated through ANSYS software. Finally, the values of stresses obtained from the derived equations and the corresponding values of stresses obtained from ANSYS have been compared. The obtained results established the efficiency of the proposed stress distribution and the optimization model in this research, which would be helpful for understanding we...