Orbital effects of Sun’s mass loss and the Earth’s fate (original) (raw)

ABSTRACT I calculate the classical effects induced by an isotropic mass loss of a body on the orbital motion of a test particle around it; the present analysis is also valid for a variation of the Newtonian constant of gravitation. I perturbatively obtain negative secular rates for the osculating semimajor axis a, the eccentricity e and the mean anomaly , while the argument of pericenter ω does not undergo secular precession, like the longitude of the ascending node Ω and the inclination I. The anomalistic period is different from the Keplerian one, being larger than it. The true orbit, instead, expands, as shown by a numerical integration of the equations of motion in Cartesian coordinates; in fact, this is in agreement with the seemingly counter-intuitive decreasing of a and e because they only refer to the osculating Keplerian ellipses which approximate the trajectory at each instant. By assuming for the Sun it turns out that the Earth's perihelion position is displaced outward by 1.3 cm along the fixed line of apsides after each revolution. By applying our results to the phase in which the radius of the Sun, already moved to the Red Giant Branch of the Hertzsprung-Russell Diagram, will become as large as 1.20 AU in about 1 Myr, I find that the Earth's perihelion position on the fixed line of the apsides will increase by AU (for ); other researchers point towards an increase of AU. Mercury will be destroyed already at the end of the Main Sequence, while Venus should be engulfed in the initial phase of the Red Giant Branch phase; the orbits of the outer planets will increase by AU. Simultaneous long-term numerical integrations of the equations of motion of all the major bodies of the solar system, with the inclusion of a mass-loss term in the dynamical force models as well, are required to check if the mutual N-body interactions may substantially change the picture analytically outlined here, especially in the Red Giant Branch phase in which Mercury and Venus may be removed from the integration.

Planetary motion around the Sun

An empirical hypothesis on the origins of the Newton's law of universal gravitation. An essential synthesis of the famous lesson given in 1964 by Richard Feynman on the geometric proof that Newton’s laws lead to the elliptical orbits of the planets around the sun.

Notes on the Motion of Celestial Bodies

JAMP, 2020

A novel method for the computation of the motion of multi-body systems is proposed against the traditional one, based on the dynamic exchange of attraction forces or using complex field equations, that hardly face two-body problems. The Newton gravitational model is interpreted as the emission of neutrino/gravitons from celestial bodies that combine to yield a cumulative flux that interacts with single bodies through a momentum balance. The neu-trino was first found by Fermi to justify the energy conservation in β decay and, using his model; we found that the emission of neutrino from matter is almost constant independently from the nuclides involved. This flux can be correlated to Gauss constant G, allowing the rebuilding of Newton law on the basis of nuclear data, the neutrino weight and the speed of light. Similarly to nature, we can therefore separate in the calculations the neutrino flux, that represents the gravitational field, is dependent on masses and is not bound to the number of bodies involved, from the motion of each body that, given the field, is independent of the mass of bodies themselves. The conflict between exchanges of forces is avoided, the mathematics is simplified, the computational time is reduced to seconds and the stability of result is guaranteed. The example of computation of the solar system including the Sun and eight planets over a period of one to one hundred years is reported, together with the evolution of the shape of the orbits.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.