Rimet F., 2012. Diatoms: an ecoregional indicator of nutrients, organic matter and micropollutants pollution. Thesis, University of Grenoble, INRA-Thonon, France, 203 pp. (original) (raw)

Abstract

Diatoms are extremely diverse ubiquitous microalgae. This makes them good indicators of the quality of aquatic ecosystems, and they have been used for this purpose for the past 50 years. Since 2000, the European Water Framework Directive has required them to be used for assessing the ecological quality of watercourses. A typological framework has to be devised in order to compare rivers that are comparable, i.e. rivers with the same bioclimatic regions, that flow over the same geological substrate at similar altitudes. Various ecoregional classifications have been defined using these parameters. At a scale covering 4 European countries (Spain, France, Italy, and Switzerland) and at a regional scale (north-east France) we show that ecoregions and geology are determinant in explaining communities, and that pollution-related parameters are less important. Unlike some other authors, we did not observe any homogenization of communities as the level of pollution level increased. Moreover, we did not observe geographically restricted communities, which make it possible to pool data from geographically distinct ecoregions with the same physical characteristics. Diatoms display a very high degree of species diversity, which can be a problem for their routine use as assessment tools. We showed that when the precision of identification was increased from sub-division to species level, pollution assessment performances also increased, but to a much less marked extent than the number of taxa. Assessment performances at the genus and species levels are similar, whereas there are ten time more species than genera. We also showed that simplifying metrics (life-forms, ecological guilds) can be used to assess nutrient levels as effectively as diatom indices based on species. Furthermore, these metrics provide additional information about biofilm structure that is not available from species-based data. Finally, micropollutant pollution of rivers is of increasing concern to citizens. We hypothesize that diatoms could be good candidates for assessing herbicide pressure. Four experiments lasting 2 months were conducted in lotic mesocosms. We showed that diatoms surrounded by thick exopolysaccharide matrices were more resistant to dissolved pesticides. On the other hand, diatoms with a high cell surface in contact with the water were disadvantaged. This kind of metric could be used in situ at a larger scale. We conclude that these metrics could be useful for the purposes of diatom bioassessment. However, we also stress the importance of combining phylogeny and ecology to clarify which environmental pressures are forcing diatoms to adapt. Such studies will enhance diatom bioassessment.

Figures (85)

Figure 2: Cymbella tumida (from the Thonon Culture Collection, culture TCC519). (left): living material (right): cleaned frustules after nitric acid treatment.

Figure 2: Cymbella tumida (from the Thonon Culture Collection, culture TCC519). (left): living material (right): cleaned frustules after nitric acid treatment.

Frustule morphology is an essential feature for both taxonomy and identification. Most taxonomic characteristics are defined on the basis of particular frustule features: symmetry and outline of the frustule, number of raphes, striae density, pore density, pore structure... Some of these characteristics can be observed using light microscopy (e.g. frustule outline, striae density), but others require scanning electron microscopy (e.g. pore density and shape, cf. Figure 1d). To observe these characteristics correctly, the diatom has to be cleaned to remove the protoplast (e.g chloroplasts, nucleus, lipid drops) (see Figure 2). Hydrogen peroxide or nitric acid are often used fo: this purpose, and there are European standards to ensure that it is carried out properly (e.g. Afnor 2003, 2007). Observations can be then carried out using light microscopy (100x immersions lens) o1 scanning electron microscopy.  Frustule morphology is an essential feature for both taxonomy and identification. Most taxonomic

Frustule morphology is an essential feature for both taxonomy and identification. Most taxonomic characteristics are defined on the basis of particular frustule features: symmetry and outline of the frustule, number of raphes, striae density, pore density, pore structure... Some of these characteristics can be observed using light microscopy (e.g. frustule outline, striae density), but others require scanning electron microscopy (e.g. pore density and shape, cf. Figure 1d). To observe these characteristics correctly, the diatom has to be cleaned to remove the protoplast (e.g chloroplasts, nucleus, lipid drops) (see Figure 2). Hydrogen peroxide or nitric acid are often used fo: this purpose, and there are European standards to ensure that it is carried out properly (e.g. Afnor 2003, 2007). Observations can be then carried out using light microscopy (100x immersions lens) o1 scanning electron microscopy. Frustule morphology is an essential feature for both taxonomy and identification. Most taxonomic

For about 14 years, field sampling, diatom preparation and counting have been standardized at the European level (Kelly et al., 1998; Afnor, 2000, 2003, 2004, 2007). This ensures good comparability of the diatom inventories produced during the last decade in the different European countries. Basically, diatoms are scraped from several stones (5 stones for the French standard) taken from lotic  zones of rivers (Figure 4).  Most of the existing biotic indices for diatoms are based on species sensitivity. However, the question of taxonomic resolution is often posed without any clear justifications, assuming that the most precise determination would be the most effective for diatom biomonitoring, even if it has tc be applied on large geographical scale by large numbers of people who may not necessarily all have the same identification skills. However, some authors have shown that there was no clear increase ir the assessment power when taxonomic resolution was increased for macroinvertebrates (Jones 2008). Moreover, identification to diatom species level (or the infra-species level) can be challenging because of the tremendous diversity of these organisms, and because of incessant taxonomica changes. Finally, from a financial point of view, identifying diatoms to species level takes much longe than doing so to genus level, which makes it more expensive. Some authors (e.g. Zampella et al. 2007) think that the large number of diatom species and the difficulty of identifying them limits thei use for routine purposes, as numerous identification errors occur at species level. Few studies have attempted to estimate the advantage to reduce the identification precision from species to class 0 sub-division level for biomonitoring purposes.

For about 14 years, field sampling, diatom preparation and counting have been standardized at the European level (Kelly et al., 1998; Afnor, 2000, 2003, 2004, 2007). This ensures good comparability of the diatom inventories produced during the last decade in the different European countries. Basically, diatoms are scraped from several stones (5 stones for the French standard) taken from lotic zones of rivers (Figure 4). Most of the existing biotic indices for diatoms are based on species sensitivity. However, the question of taxonomic resolution is often posed without any clear justifications, assuming that the most precise determination would be the most effective for diatom biomonitoring, even if it has tc be applied on large geographical scale by large numbers of people who may not necessarily all have the same identification skills. However, some authors have shown that there was no clear increase ir the assessment power when taxonomic resolution was increased for macroinvertebrates (Jones 2008). Moreover, identification to diatom species level (or the infra-species level) can be challenging because of the tremendous diversity of these organisms, and because of incessant taxonomica changes. Finally, from a financial point of view, identifying diatoms to species level takes much longe than doing so to genus level, which makes it more expensive. Some authors (e.g. Zampella et al. 2007) think that the large number of diatom species and the difficulty of identifying them limits thei use for routine purposes, as numerous identification errors occur at species level. Few studies have attempted to estimate the advantage to reduce the identification precision from species to class 0 sub-division level for biomonitoring purposes.

Figure 5: Examples of diatom life-forms. (a) ribbon colony with Fragilaria capucina var. vaucheriae (from the Thonon Culture Collection, culture TCC372), (b) mucous tubules with Encyonema minutum (live sample from the shore of Lake Geneva, 2011), (c) stalks with Gomphonema sp. (live sample from the shore of Lake Geneva, 2012), (d) fast-moving diatom, such as Nitzschia palea (culture TCC764), (e) prostrated Cocconeis placentula var. euglypta (dehydrated biofilms from the river Rollingerbaach, Luxembourg, 2003), (f) rosette of Ulnaria (dehydrated biofilms from the river Rollingerbaach, Luxembourg, 2003).

Figure 5: Examples of diatom life-forms. (a) ribbon colony with Fragilaria capucina var. vaucheriae (from the Thonon Culture Collection, culture TCC372), (b) mucous tubules with Encyonema minutum (live sample from the shore of Lake Geneva, 2011), (c) stalks with Gomphonema sp. (live sample from the shore of Lake Geneva, 2012), (d) fast-moving diatom, such as Nitzschia palea (culture TCC764), (e) prostrated Cocconeis placentula var. euglypta (dehydrated biofilms from the river Rollingerbaach, Luxembourg, 2003), (f) rosette of Ulnaria (dehydrated biofilms from the river Rollingerbaach, Luxembourg, 2003).

Figure 6: Ecoregional classification in use in Europe. Illies (1978) classification on the left and hydroecoregions (Wasson et al., 2002, 2010) on the right.

Figure 6: Ecoregional classification in use in Europe. Illies (1978) classification on the left and hydroecoregions (Wasson et al., 2002, 2010) on the right.

Figure 7: Distribution of sampling sites in the ecoregions of system A.  Sampling was carried out according to European recommendations (Kelly et al. 1998; Europear Committee for Standardization 2002, 2003). Benthic diatoms were collected from at least five stone: from the lotic parts of the sampling sites, avoiding sedimentation zones. Selected stones were those that remain in place under normal hydrological conditions. The upper surface of stones were scratched with a toothbrush. The samples fixed in 4% formaldehyde. From 1993 to 2003, 261 diator samples were collected under the framework of different European, or national research projects, o national monitoring river networks and respected the European recommendations for sampling (Kelly et al. 1998; European Committee for Standardization 2002, 2003). Twenty sites were located ir Switzerland, 67 in Italy, 79 in Spain and 95 in France (Figure 7). A detailed list of the sampling sites i: given in Appendix 1.

Figure 7: Distribution of sampling sites in the ecoregions of system A. Sampling was carried out according to European recommendations (Kelly et al. 1998; Europear Committee for Standardization 2002, 2003). Benthic diatoms were collected from at least five stone: from the lotic parts of the sampling sites, avoiding sedimentation zones. Selected stones were those that remain in place under normal hydrological conditions. The upper surface of stones were scratched with a toothbrush. The samples fixed in 4% formaldehyde. From 1993 to 2003, 261 diator samples were collected under the framework of different European, or national research projects, o national monitoring river networks and respected the European recommendations for sampling (Kelly et al. 1998; European Committee for Standardization 2002, 2003). Twenty sites were located ir Switzerland, 67 in Italy, 79 in Spain and 95 in France (Figure 7). A detailed list of the sampling sites i: given in Appendix 1.

Table 1. Median, maximum and minimum values of the parameters measured in the sampling sites of the studied area. Values are also given for the SPI diatom index (Coste in Cemagref 1982), with: 1<very bad quality<5s bad quality<9smedium quality<13<good quality<17<very good qualitys20.  Table 1. Median, maximum and minimum values of the parameters measured in the sampling sites of the

Table 1. Median, maximum and minimum values of the parameters measured in the sampling sites of the studied area. Values are also given for the SPI diatom index (Coste in Cemagref 1982), with: 1<very bad quality<5s bad quality<9smedium quality<13<good quality<17<very good qualitys20. Table 1. Median, maximum and minimum values of the parameters measured in the sampling sites of the

*: calculated on available data  Table 2. Characteristics of the ecoregions. Median values are given for several environmental parameters and for the SPI diatom index (Coste in Cemagref 1982).

*: calculated on available data Table 2. Characteristics of the ecoregions. Median values are given for several environmental parameters and for the SPI diatom index (Coste in Cemagref 1982).

Figure 9: MRPP analysis carried out on two different cluster analysis: K-means method and hierarchical agglomerative method. The A-statistic was calculated from 2 to 15 clusters. A=0 if heterogeneity within clusters equals expectation by chance; A>0 if there is less agreement within clusters than expected by chance, A=1 when all items are different between clusters.

Figure 9: MRPP analysis carried out on two different cluster analysis: K-means method and hierarchical agglomerative method. The A-statistic was calculated from 2 to 15 clusters. A=0 if heterogeneity within clusters equals expectation by chance; A>0 if there is less agreement within clusters than expected by chance, A=1 when all items are different between clusters.

Figure 10: Geographical location of the K-means clusters, 1, 2, 3, 4. Bar charts gives the number of sampling site in each ecoregion for each cluster.

Figure 10: Geographical location of the K-means clusters, 1, 2, 3, 4. Bar charts gives the number of sampling site in each ecoregion for each cluster.

Medians calculated on available data for conductivity, NO;, NO, NH,” and PO,’ .  Table 4. Environmental characteristics of the 8 K-means clusters. Median values of some environmental parameters are given. Median values are also given for the SPI diatom index (Coste in Cemagref 1982), with:  1svery bad quality<5<bad quality<9<smedium quality<13<good quality<17s<very good qualityS20. Minimum and maximum values are mentioned in brackets.

Medians calculated on available data for conductivity, NO;, NO, NH,” and PO,’ . Table 4. Environmental characteristics of the 8 K-means clusters. Median values of some environmental parameters are given. Median values are also given for the SPI diatom index (Coste in Cemagref 1982), with: 1svery bad quality<5<bad quality<9<smedium quality<13<good quality<17s<very good qualityS20. Minimum and maximum values are mentioned in brackets.

Figure 12: Comparison of the importance of the different environmental parameter for the diatom assemblages assessed with the A-statistic. The A-statistic is given for each parameter classification: (a) comparison of parameters classifications composed of 4 classes, (b) comparison of parameters classifications composed of 8 classes. The A-statistic is expressed as a percentage of the A-statistic of the K-means clusters defined with diatom assemblages. A-statistic of K-means clusters was used to give the classification that had  the highest signification for diatom assemblages.

Figure 12: Comparison of the importance of the different environmental parameter for the diatom assemblages assessed with the A-statistic. The A-statistic is given for each parameter classification: (a) comparison of parameters classifications composed of 4 classes, (b) comparison of parameters classifications composed of 8 classes. The A-statistic is expressed as a percentage of the A-statistic of the K-means clusters defined with diatom assemblages. A-statistic of K-means clusters was used to give the classification that had the highest signification for diatom assemblages.

The sampling area is situated in North-eastern France (Figure 13), and measures approximately 230 km east/west and 250 km north/south. It encompasses three major river basins. First, the Meuse basin, which is largely dominated by agriculture; the River Meuse flows for about 340 km in France, and then continues its course in Belgium. Second, the Moselle basin, which is mostly dominated by industrial activities; the River Moselle flows for 310 km in France; and then continues its course along the border of Luxembourg and Germany. Third, the Sarre basin, is occupied by forestry in its upper part, but industrial and agricultural activities in its lower part. The River Sarre flows for 130 km in France, and then continues its course in Germany.  France, and then continues its course in Germany.

The sampling area is situated in North-eastern France (Figure 13), and measures approximately 230 km east/west and 250 km north/south. It encompasses three major river basins. First, the Meuse basin, which is largely dominated by agriculture; the River Meuse flows for about 340 km in France, and then continues its course in Belgium. Second, the Moselle basin, which is mostly dominated by industrial activities; the River Moselle flows for 310 km in France; and then continues its course along the border of Luxembourg and Germany. Third, the Sarre basin, is occupied by forestry in its upper part, but industrial and agricultural activities in its lower part. The River Sarre flows for 130 km in France, and then continues its course in Germany. France, and then continues its course in Germany.

Figure 15: Groups of samples defined on the basis of their diatom composition. The groups were calculated using a Twinspan analysis.

Figure 15: Groups of samples defined on the basis of their diatom composition. The groups were calculated using a Twinspan analysis.

Table 5: Number of samples and sites constituting the 16 Twinspan final groups.

Table 5: Number of samples and sites constituting the 16 Twinspan final groups.

Figure 16: Location of the groups 2 (black spots) and 3 (white spots).

Figure 16: Location of the groups 2 (black spots) and 3 (white spots).

‘igure 20: Discriminant analysis carried out on 22 environmental parameters and the 16 final groups. A orward selection was realized to remove 7 redundant parameters. The canonical coefficient of the ‘nvironmental parameters on the first axis of the discriminant analysis (absolute value) are represented fo he 15 lasting parameters.

‘igure 20: Discriminant analysis carried out on 22 environmental parameters and the 16 final groups. A orward selection was realized to remove 7 redundant parameters. The canonical coefficient of the ‘nvironmental parameters on the first axis of the discriminant analysis (absolute value) are represented fo he 15 lasting parameters.

Figure 21: Study area and its major rivers  and 996 samples from the Rhine-Meuse catchment between 2000 and 2005.  Sampling was carried-out in two hydrographical basins in France (Figure 21). The Rhdne- Mediterranean catchment in the south, encompass two major rivers, the Rhéne and Sadne. The Rhine-Meuse basin in the north, encompass three major rivers, the Moselle, the Meuse and the Rhine. 1002 samples were taken from the Rhéne-Mediterranean catchment between 2005 and 2008 and 996 samples from the Rhine-Meuse catchment between 2000 and 2005.

Figure 21: Study area and its major rivers and 996 samples from the Rhine-Meuse catchment between 2000 and 2005. Sampling was carried-out in two hydrographical basins in France (Figure 21). The Rhdne- Mediterranean catchment in the south, encompass two major rivers, the Rhéne and Sadne. The Rhine-Meuse basin in the north, encompass three major rivers, the Moselle, the Meuse and the Rhine. 1002 samples were taken from the Rhéne-Mediterranean catchment between 2005 and 2008 and 996 samples from the Rhine-Meuse catchment between 2000 and 2005.

Figure 22: Number of taxa for each taxonomic resolution

Figure 22: Number of taxa for each taxonomic resolution

2. Influence of taxonomic resolution on correlation and prediction of environmental parameters  Correlations between organic matter or nutrients and diatom assemblages increase from sub division resolution to a maximum value at the genus resolution (Figure 24). Correlations are lower a species resolution. Correlations between diatoms and mineral content show a different trend: the highest correlations are met for class and species resolutions and the lowest for subdivisior resolution. Correlations are non-significant from sub-division to order resolution for nutrients, fron sub-division to class resolution for organic matter and only for sub-division resolution for minera content. When summing the correlations of these three parameters, it appears that correlatior  increases from subdivision to species level, but correlations of genus and species resolutions ar comparable.  Predictive models performances increased when taxonomic resolution became more precise (Figure 25). Correlations between observed and predicted values of organic matter and nutrient: concentrations were much lower for subdivision and class resolutions than for order to specie: resolutions. For nutrients, correlations are equivalent from order to species resolution. For organi matter, correlations gradually increase from family to species resolution. Correlations for minera contents were null for subdivision, and much higher from class to species resolutions. Correlation: with mineral content gradually increase from class to species resolution.  Predictive models performances increased when taxonomic resolution became more precise (Figure

2. Influence of taxonomic resolution on correlation and prediction of environmental parameters Correlations between organic matter or nutrients and diatom assemblages increase from sub division resolution to a maximum value at the genus resolution (Figure 24). Correlations are lower a species resolution. Correlations between diatoms and mineral content show a different trend: the highest correlations are met for class and species resolutions and the lowest for subdivisior resolution. Correlations are non-significant from sub-division to order resolution for nutrients, fron sub-division to class resolution for organic matter and only for sub-division resolution for minera content. When summing the correlations of these three parameters, it appears that correlatior increases from subdivision to species level, but correlations of genus and species resolutions ar comparable. Predictive models performances increased when taxonomic resolution became more precise (Figure 25). Correlations between observed and predicted values of organic matter and nutrient: concentrations were much lower for subdivision and class resolutions than for order to specie: resolutions. For nutrients, correlations are equivalent from order to species resolution. For organi matter, correlations gradually increase from family to species resolution. Correlations for minera contents were null for subdivision, and much higher from class to species resolutions. Correlation: with mineral content gradually increase from class to species resolution. Predictive models performances increased when taxonomic resolution became more precise (Figure

Figure 25: Comparison of WA models performances with (a) RMSEP (Root Mean Square Error of Prediction) and (b) R-value (Pearson correlation coefficient) calculated between predicted and observed values. (***: p<0.001, **: p<0.01, *: p<0.05, ns: p>0.05).

Figure 25: Comparison of WA models performances with (a) RMSEP (Root Mean Square Error of Prediction) and (b) R-value (Pearson correlation coefficient) calculated between predicted and observed values. (***: p<0.001, **: p<0.01, *: p<0.05, ns: p>0.05).

3. Influence of taxonomic resolution on relationship between river typology and diatom assemblages There is no correspondence between Strahler rank and diatom described at subdivision resolution, a well as for ecoregion and diatoms at subdivision and class resolutions (Figure 26). For ecoregion there is a gradual increase of correspondence with diatom assemblages as taxonomic resolutio1  becomes finer. For Strahler rank, the correspondence increases from class to order resolution, then i reaches a plateau for finer resolutions.  » HIJIUCHICe UF CUAUTIOTINCG FOSOUIULIOTIO UTE USSCHINIGGe COMIPUSILIOCH! UCSCHIVCUUTT  he description of diatom assemblages’ structure was very stable from order to species resolution uggesting that taxonomic resolution had quite little influence on assemblage structure description hese strong correlations suggest that little ecological information is lost when taxonomic resolutio: ecreased from species to order level. Similar findings were obtained for freshwater benthi yacroinvertebrates (Bowman and Bailey 1997) when expressed with quantitative data. But this wa ot the case when the data were expressed qualitatively (Bowman and Bailey 1997; Crawford et a.  992).

3. Influence of taxonomic resolution on relationship between river typology and diatom assemblages There is no correspondence between Strahler rank and diatom described at subdivision resolution, a well as for ecoregion and diatoms at subdivision and class resolutions (Figure 26). For ecoregion there is a gradual increase of correspondence with diatom assemblages as taxonomic resolutio1 becomes finer. For Strahler rank, the correspondence increases from class to order resolution, then i reaches a plateau for finer resolutions. » HIJIUCHICe UF CUAUTIOTINCG FOSOUIULIOTIO UTE USSCHINIGGe COMIPUSILIOCH! UCSCHIVCUUTT he description of diatom assemblages’ structure was very stable from order to species resolution uggesting that taxonomic resolution had quite little influence on assemblage structure description hese strong correlations suggest that little ecological information is lost when taxonomic resolutio: ecreased from species to order level. Similar findings were obtained for freshwater benthi yacroinvertebrates (Bowman and Bailey 1997) when expressed with quantitative data. But this wa ot the case when the data were expressed qualitatively (Bowman and Bailey 1997; Crawford et a. 992).

+ resist the perturbation; - do not resist the perturbation

+ resist the perturbation; - do not resist the perturbation

Figure 27: Map of the study area showing its localization and the main watercourses.  ee A  Diatom samplings were collected in 2007 in accordance with the Biological Diatom Index standard (Afnor, 2007), which incorporates the European standard for diatom sampling (European Committee for Standardisation, 2002). Sampling was carried out during the low flow season, i.e. during the summer in most cases, except for the sampling sites dominated by snow (with low flows during the winter), which were sampled during the winter. Benthic diatoms were collected from at least five stones from the lotic parts of the sampling sites. The upper surfaces of the stones were scrubbed with a toothbrush. The samples were fixed in 4% formaldehyde. In the laboratory, the diatom valves were cleaned using 40% hydrogen peroxide, to eliminate organic matter, and with hydrochloric acid to dissolve calcium carbonate. Clean diatom frustules were mounted in a synthetic resin (Naphrax©). For each sample, at least 400 valves were counted and identified by light microscopy using phase contrast or differential interference contrast with 1000x magnification. The abundances of all the taxa observed were expressed as relative counts. The identifications and counts followed standard methods (Afnor 2007) using the Krammer and Lange-Bertalot floras (1986, 1988, 1991a, 1991b), and other specialised bibliographical data when needed.  Chemical analyses were also carried out at the same sampling sites. Dissolved Oxvoen (NO).

Figure 27: Map of the study area showing its localization and the main watercourses. ee A Diatom samplings were collected in 2007 in accordance with the Biological Diatom Index standard (Afnor, 2007), which incorporates the European standard for diatom sampling (European Committee for Standardisation, 2002). Sampling was carried out during the low flow season, i.e. during the summer in most cases, except for the sampling sites dominated by snow (with low flows during the winter), which were sampled during the winter. Benthic diatoms were collected from at least five stones from the lotic parts of the sampling sites. The upper surfaces of the stones were scrubbed with a toothbrush. The samples were fixed in 4% formaldehyde. In the laboratory, the diatom valves were cleaned using 40% hydrogen peroxide, to eliminate organic matter, and with hydrochloric acid to dissolve calcium carbonate. Clean diatom frustules were mounted in a synthetic resin (Naphrax©). For each sample, at least 400 valves were counted and identified by light microscopy using phase contrast or differential interference contrast with 1000x magnification. The abundances of all the taxa observed were expressed as relative counts. The identifications and counts followed standard methods (Afnor 2007) using the Krammer and Lange-Bertalot floras (1986, 1988, 1991a, 1991b), and other specialised bibliographical data when needed. Chemical analyses were also carried out at the same sampling sites. Dissolved Oxvoen (NO).

There are significant differences between the mean values of the BDI in the organic pollution (p < 0.001) and trophic level classes (p < 0.001) (Table 10 and Figure 29). The watercourses classified in the trophic class t1 corresponded to medium quality watercourses (BDI average in t1 = 12.06). The watercourses classified in the trophic class t2 corresponded to good quality watercourses (BDI  watercourses classified in the trophic class t2 corresponded to good quality watercourses (BDI

There are significant differences between the mean values of the BDI in the organic pollution (p < 0.001) and trophic level classes (p < 0.001) (Table 10 and Figure 29). The watercourses classified in the trophic class t1 corresponded to medium quality watercourses (BDI average in t1 = 12.06). The watercourses classified in the trophic class t2 corresponded to good quality watercourses (BDI watercourses classified in the trophic class t2 corresponded to good quality watercourses (BDI

Figure 29: Box plot of the Biological Diatom Index (BDI) value for (a) the trophic level classes (Kruskal Wallis test: p<0.001) and (b) the organic pollution classes (Kruskal Wallis test: p<0.001).  the trophic level and the organic pollution levels were high (Figure 32-c, Figure 33-cFigure 34).

Figure 29: Box plot of the Biological Diatom Index (BDI) value for (a) the trophic level classes (Kruskal Wallis test: p<0.001) and (b) the organic pollution classes (Kruskal Wallis test: p<0.001). the trophic level and the organic pollution levels were high (Figure 32-c, Figure 33-cFigure 34).

Figure 34: Discrimination power of the different metrics for organic pollution and trophic level as indicated by the H-values of the Kruskal-Wallis tests. The tests were run for all the size-classes, life-forms and ecological guilds tested according to (a) the trophic level and (b) the organic pollution classes. (distribution differences between the classes, N.S.- no significant difference, p > 0.05; ** — significant difference, p < 0.01; *** _ significant difference, p < 0.001).  For organic pollution the highest H-value (Figure 34-b) was observed for the BDI (Hsp, = 53.3). The H- values were also high for stalked diatoms (Hstakea = 45.8), tube-forming diatoms (Htube-forming = 40.1), large sized diatoms (H,.s = 36.9) and the motile guild diatoms (Hmotie= 32.5). For trophic level, the highest H-value (Figure 34-a) was observed for stalked diatoms (Hstaeq = 142.5) and the second highest was observed for the BDI (Hgp; = 137.9). Some metrics other than BDI and stalked diatoms also showed high H-values for trophic level as motile guild diatoms (Hmotie = 123.8) and tube-forming diatoms (Htube-forming = 96.3).  diatoms (Htube-forming = 96.3

Figure 34: Discrimination power of the different metrics for organic pollution and trophic level as indicated by the H-values of the Kruskal-Wallis tests. The tests were run for all the size-classes, life-forms and ecological guilds tested according to (a) the trophic level and (b) the organic pollution classes. (distribution differences between the classes, N.S.- no significant difference, p > 0.05; ** — significant difference, p < 0.01; *** _ significant difference, p < 0.001). For organic pollution the highest H-value (Figure 34-b) was observed for the BDI (Hsp, = 53.3). The H- values were also high for stalked diatoms (Hstakea = 45.8), tube-forming diatoms (Htube-forming = 40.1), large sized diatoms (H,.s = 36.9) and the motile guild diatoms (Hmotie= 32.5). For trophic level, the highest H-value (Figure 34-a) was observed for stalked diatoms (Hstaeq = 142.5) and the second highest was observed for the BDI (Hgp; = 137.9). Some metrics other than BDI and stalked diatoms also showed high H-values for trophic level as motile guild diatoms (Hmotie = 123.8) and tube-forming diatoms (Htube-forming = 96.3). diatoms (Htube-forming = 96.3

Figure 33: Box-plot of the ecological guild abundance for the trophic level classes. (a) high-profile diatoms (Kruskal Wallis: p<0.001), (b) low-profile diatoms (Kruskal Wallis: p<0.001), (c) motile diatoms (Kruskal Wallis: p<0.001).

Figure 33: Box-plot of the ecological guild abundance for the trophic level classes. (a) high-profile diatoms (Kruskal Wallis: p<0.001), (b) low-profile diatoms (Kruskal Wallis: p<0.001), (c) motile diatoms (Kruskal Wallis: p<0.001).

Table 12: Assignment of taxa to biological metrics (life-forms and ecological guilds).  Prior to assessing the effects of pesticides, the homogeneity of the physical and chemical conditions oetween the channels was tested for each experiment. One-way ANOVA (experiments 3 and 4) and t- tests (experiments 1 and 2) were carried out on these measures. The same analyses were run to assess the significance of contamination factors.

Table 12: Assignment of taxa to biological metrics (life-forms and ecological guilds). Prior to assessing the effects of pesticides, the homogeneity of the physical and chemical conditions oetween the channels was tested for each experiment. One-way ANOVA (experiments 3 and 4) and t- tests (experiments 1 and 2) were carried out on these measures. The same analyses were run to assess the significance of contamination factors.

Figure 38: Structuring importance of different descriptors on the ecological guilds. The A-statistic (calculated by mean of a MRPP) gives an assessment of assemblage heterogeneity for colonization times (sampling dates), types of treatments (water turbulence, acute/chronic pollution) and pesticide contamination (contaminated/uncontaminated channels, the MRPP tests are calculated on the data during pesticide contamination). This heterogeneity gives an assessment of the structuring effect of each of these 3 descriptors. +: p-value < 10%, *: p-value < 5%, ***: p-value < 0.1%.

Figure 38: Structuring importance of different descriptors on the ecological guilds. The A-statistic (calculated by mean of a MRPP) gives an assessment of assemblage heterogeneity for colonization times (sampling dates), types of treatments (water turbulence, acute/chronic pollution) and pesticide contamination (contaminated/uncontaminated channels, the MRPP tests are calculated on the data during pesticide contamination). This heterogeneity gives an assessment of the structuring effect of each of these 3 descriptors. +: p-value < 10%, *: p-value < 5%, ***: p-value < 0.1%.

Figure 37: Importance of different descriptors in structuring the taxonomical composition. The A-statistic (calculated by an MRPP) provides an assessment of the assemblage heterogeneity for colonization times (sampling dates), types of treatments (water turbulence, acute/chronic pollution) and pesticide contamination (contaminated/uncontaminated channels, the MRPP tests are calculated from the data obtained during pesticide contamination). This heterogeneity gives an assessment of the structuring effect for each of these 3 descriptors. *: significant difference (p<5%), ***: very significant difference (p<0.1%).

Figure 37: Importance of different descriptors in structuring the taxonomical composition. The A-statistic (calculated by an MRPP) provides an assessment of the assemblage heterogeneity for colonization times (sampling dates), types of treatments (water turbulence, acute/chronic pollution) and pesticide contamination (contaminated/uncontaminated channels, the MRPP tests are calculated from the data obtained during pesticide contamination). This heterogeneity gives an assessment of the structuring effect for each of these 3 descriptors. *: significant difference (p<5%), ***: very significant difference (p<0.1%).

Table 15: Differences in abundance metrics in the colonization times. Two-way ANOVA (first factor: colonization time, second factor: contamination), ns: p-value > 5%, *: p-value < 5%, **: p-value<1%, ***: p value<0.1%.

Table 15: Differences in abundance metrics in the colonization times. Two-way ANOVA (first factor: colonization time, second factor: contamination), ns: p-value > 5%, *: p-value < 5%, **: p-value<1%, ***: p value<0.1%.

Table 14: Differences in abundance metrics in the unpolluted and polluted channels. Two-way ANOVA (first factor: colonization time, second factor: contamination), and pairwise multiple comparison procedures (Holm-Sidak method) were carried out. @: significant (p-value < 5%) abundance increases from unpolluted to  polluted channels, &: significant (p-value < 5%) abundance decreases from unpolluted to polluted channels, ns: no significant evolution.

Table 14: Differences in abundance metrics in the unpolluted and polluted channels. Two-way ANOVA (first factor: colonization time, second factor: contamination), and pairwise multiple comparison procedures (Holm-Sidak method) were carried out. @: significant (p-value < 5%) abundance increases from unpolluted to polluted channels, &: significant (p-value < 5%) abundance decreases from unpolluted to polluted channels, ns: no significant evolution.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (574)

  1. Rimet F., Gomà J., Cambra J., Bertuzzi E., Cantonati M., Cappelletti C., Ciutti F., Cordonier A., Coste M., Delmas F., Tison J., Tudesque L., Vidal H. & Ector L., 2007. Benthic diatoms in western European streams with altitudes above 800 m: Characterisation of the main assemblages and correspondence with ecoregions. Diatom Research, 22: 147-188.
  2. Rimet F., 2009. Benthic diatom assemblages and their correspondence with ecoregional classifications: case study of rivers in north-eastern France. Hydrobiologia, 636: 137-151.
  3. Rimet F. & Bouchez A., 2012. Biomonitoring River Diatoms: Implications of Taxonomic Resolution. Ecological Indicators, 15: 92-99.
  4. Berthon V., Bouchez A. & Rimet F., 2011. Using diatom life-forms and ecological guilds to assess organic pollution and trophic level in rivers: a case study of rivers in south-eastern France. Hydrobiologia, 673: 259-271.
  5. Rimet F. & Bouchez A., 2011. Use of diatom life-forms and ecological guilds to assess pesticide contamination in rivers: lotic mesocosm approaches. Ecological Indicators, 11: 489-499. purpose, because this experimental approach makes it possible to control many environmental factors, making it easier to check hypotheses. i. References
  6. Afnor, 2000. Norme Française NF T 90-354 : Qualité de l'eau. Détermination de l'Indice Biologique Diatomées (IBD). Afnor 1-53.
  7. Afnor, 2003. NF EN 13946. Qualité de l'eau. Guide pour l'échantillonnage en routine et le prétraitement des diatomées benthiques de rivières. Afnor 1-18.
  8. Afnor, 2004. NF EN 14407. Qualité de l'eau. Guide pour l'identification et le dénombrement des échantillons de diatomées benthiques de rivières, et leur interprétation. Afnor 1-13.
  9. Afnor, 2007. NF T90-354. Qualité de l'eau -Détermination de l'Indice Biologique Diatomées (IBD). Afnor 1-79.
  10. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. Second edition. US Environmental Protection Agency, Office of Water, Washington, DC, 1.
  11. Bérard, A., F. Rimet, Y. Capowiez & C. Leboulanger, 2004. Procedures for Determining the Pesticide Sensitivity of Indigenous Soil Algae: A Possible Bioindicator of Soil Contamination? Archives of Environmental Contamination and Toxicology 46: 24-31.
  12. Boudou, A.& F. Ribeyre, 1997. Aquatic Ecotoxicology: From the Ecosystem to the Cellular and Molecular Levels. Environmental Health Perspectives 105: 21-35.
  13. Butcher, R. W., 1947. Studies in the ecology of rivers. IV. The algae of organically enriched water. Journal of Ecology 35: 186-191.
  14. Cantonati, M. & H. Lange-Bertalot, 2006. Achnanthidium dolomiticum sp. nov. (Bacillariophyta) from oligotrophic mountain springs and lakes fed by dolomite aquifers. Journal of Phycology 42: 1184- 1188.
  15. Chessman, B., I. Growns, J. Currey & N. Plunkett-Cole, 1999. Predicting diatom communities at the genus level for the rapid biological assessment of rivers. Freshwater Biology 41: 317-331.
  16. Coste, M., C. Bosca & A. Dauta, 1991. Use of algae for monitoring rivers in France. In Whitton, B. A., E. Rott & G. Fridriech (eds), Institüt für Botanik, Universitat Innsbruck: 75-83.
  17. Debenest, T., J. Silvestre, M. Coste, F. Delmas & E. Pinelli, 2008. A new cell primo-culture method for freshwater benthic diatom communities. Journal of Applied Phycology 21: 65-73.
  18. Dorigo, U., C. Leboulanger, A. Bérard, A. Bouchez, J. F. Humbert & B. Montuelle, 2007. Lotic biofilm community structure and pesticide tolerance along a contamination gradient in a vineyard area. Aquatic Microbial Ecology 50: 91-102.
  19. Druart, J. C. & F. Straub, 1988. Description de deux nouvelles Cyclotelles (Bacillariophyceae) de milieux alcalins et eutrophes: Cyclotella costei nov. sp. et Cyclotella wuetrichiana nov. sp. Schweizererische Zeitschrift für Hydrobiologie 50/2: 182-188.
  20. European commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities 327: 1-72.
  21. Evans, K. M., A. H. Wortley, G. E. Simpson, V. A. Chepurnov & D. G. Mann, 2008. A molecular systematic approach to explore diversity within the Sellaphora pupula species complex (Bacillariophyta). Journal of Phycology 44: 215-231.
  22. Finkel, Z. V., C. J. Vaillancourt, A. J. Irwin, E. D. Reavie & J. P. Smol, 2009. Environmental control of diatom community size structure varies across aquatic ecosystems. Proceedings of the Royal Society B-Biological Sciences 276: 1627-1634.
  23. Finlay, B. J., 1996. Global diversity and body size. Nature 383: 132-133.
  24. Fjerdingstad, E., 1950. The microflora of the river Molleaa with special reference to the relation of benthic algae to pollution. Folia Limnologica Scandinavica 5: 1-123.
  25. Gold, C., 2002. Etude des effets de la pollution métallique (Cd/Zn) sur la structure des communautés de diatomées périphytiques des cours d'eau. Approche expérimentales in situ et en laboratoire. Thesis, Université Bordeaux 1, 1-175.
  26. Guasch, H., N. Ivorra, V. Lehmann, M. Paulsson, M. Real & S. Sabater, 1998. Community composition and sensitivity of periphyton to atrazine in flowing waters: the role of environmental factors. Journal of Applied Phycology 10: 203-213.
  27. Guasch, H., I. Munoz, N. Roses & S. Sabater, 1997. Changes in atrazine toxicity throught succession of stream periphyton communities. Journal of Applied Phycology 9: 137-146.
  28. Hakansson, H. & K. B. Carter, 1990. An interpretation of Hustedt's terms "Schattenlinie", Perlenreihe" and "Höcker" Using Specimens of the Cyclotella radiosa-complex, C. distinguenda Hust., and C. cyclopuncta nov. sp. Journal of the Iowa Academy of Science 97: 153-156.
  29. Hawkins, C. P., R. H. Norris, J. Gerritsen, R. M. Hughes, S. K. Jackson, R. K. Johnson & R. J. Stevenson, 2000. Evaluation of the use of landscape classifications for the prediction of freshwater biota: synthesis and recommendations. Journal of the North American Benthological Society 19: 541-556.
  30. Hoagland, K. D., S. C. Roemer & J. R. Rosowski, 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). American Journal of Botany 69: 188-213.
  31. Hustedt, F., 1957. Die Diatomeenflora des Flusssystems der Weser im Gebiet der Hansestadt Bremen. Abhandlungen naturwissenschaftlichen Verein zu Bremen 34: 181-440.
  32. Illies, J., 1978. Limnofauna europea, a checklist of the animals inhabiting European inland waters, with accounts to their distribution and ecology (except protozoa). Stuttgart.
  33. Jones, F. C., 2008. Taxonomic sufficiency: The influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environmental Reviews 16: 45-69.
  34. Kelly, M. G., A. Cazaubon, E. Coring, A. Dell'Uomo, L. Ector, B. Goldsmith, H. Guasch, J. Hürlimann, A. Jarlman, B. Kawecka, J. Kwandrans, R. Laugaste, E. A. Lindstrom, M. Leitao, P. Marvan, J. Padisák, E. Pipp, J. Prygiel, E. Rott, S. Sabater, H. Van Dam & J. Vizinet, 1998. Recommendations for the routine sampling of diatoms for water qualtiy assessments in Europe. Journal of Applied Phycology 10: 215- 224. Kermarrec, L., A. Bouchez, F. Rimet & J. F. Humbert, 2012. Using a polyphasic approach to explore the diversity and geographical distribution of the Gomphonema parvulum (Kützing) Kützing complex (Bacillariophyta). Journal of Phycology in review.
  35. Kolkwitz, R.& M. Marson, 1908. Ökologie der pflanzliche Saprobien. Berichte der Deutsche Botanische Gesellschaften 26: 505-519.
  36. Lange-Bertalot, H., 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64: 285-304.
  37. Leira, M.& S. Sabater, 2005. Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Research 39: 73-82.
  38. Liess, M.& P. C. Von der Ohe, 2005. Analyzing effects of pesticides on invertebrate communities in streams. Environmental Toxicology and Chemistry 24: 954-965.
  39. Lobo, E., K. Katoh & Y. Aruga, 1995. Response of epilithic diatom assemblages to water pollution in rivers in the Tokyo Metropolitan area, Japan. Freshwater Biology 34: 191-204.
  40. Loos, R., B. M. Gawlik, G. Locoro, E. Rimaviciute, S. Contini & G. Bidoglio, 2009. EU-wide survey of polar organic persistent pollutants in European river waters. Environmental pollution 157: 561-568.
  41. Mann, D. G.& S. J. M. Droop, 1996. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336: 19-32.
  42. Mann, D. G., S. M. McDonald, M. M. Bayer, S. J. M. Droop, V. A. Chepurnov, R. E. Loke, A. Ciobanu & J. M. H. du Buf, 2004. The Sellaphora pupula species complex (Bacillariophyceae): morphometric analysis, ultrastructure and mating data provide evidence for five new species. Phycologia 43: 459- 482. Ministère de l'Agriculture et de la Pêche, 2008. Plan Ecophyto 2018 de réduction des usages de pesticides 2008-2018. (http://agriculture.gouv.fr/sections/magazine/focus/phyto-2018-plan- pour/#planECOPHYTO2018).
  43. Morin, S., 2006. Bioindication des effets des pollution métalliques sur les communautés de diatomées benthiques. Approches expérimentales et in situ. Thesis, Cemagref Bordeaux, Université de Bordeaux 1, 1-302.
  44. Morin, S., M. Bottin, N. Mazella, F. Macary, F. Delmas, P. Winterton & M. Coste, 2009a. Linking diatom community structure to pesticide input as evaluated through a spatial contamination potential (Phytopixal): A case study in the Neste river system (South-West France). Aquatic toxicology 94: 28-39.
  45. Morin, S., S. Pesce, A. Tlili, M. Coste & B. Montuelle, 2009b. Recovery potential of periphytic communities in a river impacted by a vineyard watershed. Ecological Indicators 10: 419-426.
  46. Morin, S., M. Vivas-Nogues, T. T. Duong, A. Boudou, M. Coste & F. Delmas, 2007. Dynamics of benthic diatom colonization in a cadmium/zinc-polluted river (Riou-Mort, France). Archives of Hydrobiology 168: 179-197.
  47. Naiman, R. J., D. G. Lonzarich, T. J. Beechie & S. C. Ralph, 1992. General principles of classification and the assessment of conservation potential in rivers. In Boon, P., P. Calow & G. Petts (eds), Rivers conservation and managment. Wiley & Sons, Chichester, U.K..
  48. Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1-19.
  49. Pan, Y., J. R. Stevenson, P. Vaithiyanathan, J. Slate & C. J. Richardson, 2000a. Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland, USA. Freshwater Biology 44: 339-353.
  50. Pan, Y., R. J. Stevenson, B. H. Hill & A. T. Herlihy, 2000b. Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of the North American Benthological Society 19: 518- 540. Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171-178.
  51. Patrick, R., 1961. A study of the number and kinds of species found in rivers of the Eastern Unisted States. Proceedings of the Academy of Natural Sciences of Philadelphia 113: 215-258.
  52. Peres, F., D. Florin, T. Grollier, A. FeurtetMazel, M. Coste, F. Ribeyre, M. Ricard & A. Boudou, 1996. Effects of the phenylurea herbicide isoproturon on periphytic diatom communities in freshwater indoor microcosms. Environmental pollution 94: 141-152.
  53. Potapova, M. G., D. F. Charles, K. C. Ponader & D. M. Winter, 2004. Quantifying species indicator values for trophic diatom indices: a comparison of approaches. Hydrobiologia 517: 25-41.
  54. Pouličková, A., J. Vesela, J. Neustupa & P. Skaloud, 2010. Pseudocryptic Diversity versus Cosmopolitanism in Diatoms: a Case Study on Navicula cryptocephala Kutz. (Bacillariophyceae) and Morphologically Similar Taxa. Protist 3: 353-369.
  55. Pringle, C. M., 1990. Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algae. Ecology 71: 905-920.
  56. Quiroga, I.& M. J. Chretiennot-Dinet, 2004. A new species of Minidiscus (Diatomophyceae, Thalassiosiraceae) from the eastern English Channel, France. Botanica Marina 47: 341-348.
  57. Rimet, F., L. Ector, H. M. Cauchie & L. Hoffmann, 2004. Regional distribution of diatom assemblages in the headwater streams of Luxembourg. Hydrobiologia 520: 105-117.
  58. Round, F. E., R. M. Crawford & D. G. Mann, 1990. The diatoms. Biology, morphology of the genera. Cambridge University press. 747 pp.
  59. Schafer, R. B., T. Caquet, K. Siimes, R. Mueller, L. Lagadic & M. Liess, 2007. Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Science of the Total Environment 382: 272-285.
  60. Soininen, J., 2004. Benthic diatom community structure in boreal streams. Distribution patterns along environmental and spatial gradients. Thesis, University of Helsinki, Helsinki, Finland, 46 pp.
  61. Soininen, J., 2007. Environmental and spatial control of freshwater diatoms -A review. Diatom Research 22: 473-490.
  62. Tornes, E., J. Cambra, J. Goma, M. Leira, R. Ortiz & S. Sabater, 2007. Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. Annales de Limnologie-International Journal of Limnology 43: 1-11.
  63. Trobajo, R., E. Clavero, V. Chepurnov, K. Sabbe, D. G. Mann, S. Ishihara & E. J. Cox, 2009. Morphological, genetic and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae). Phycologia 48: 443-459.
  64. Van Heurck, H., 1882. Synopsis des diatomées de Belgique. Anvers 1885. 235 pp.
  65. Vanelslander, B., V. Creach, P. Vanormelingen, A. Ernst, V. A. Chepurnov, E. Sahan, G. Muyzer, L. J. Stal, W. Vyverman & K. Sabbe, 2009. Ecological Differentiation Between Sympatric Pseudocryptic Species in the Estuarine Benthic Diatom Navicula Phyllepta (Bacillariophyceae). Journal of Phycology 45: 1278-1289.
  66. Wasson, J. G., A. Chandesris, H. Pella & L. Blanc, 2002. Les hydro-écorégions de France métropolitaine. Approche régionale de la typologie des eaux courantes et éléments pour la définition des peuplements de référence d'invertébrés. Cemagref Lyon, France, 190 pp.
  67. Wasson, J. G., B. Villeneuve, A. Iital, J. Murray-Bligh, M. Dobiasova, S. Bacikova, H. Timm, H. Pella, N. Mengin & A. Chandesris, 2010. Large-scale relationships between basin and riparian land cover and the ecological status of European rivers. Freshwater Biology 55: 1465-1482.
  68. Zampella, R. A., K. J. Laidig & R. L. Lowe, 2007. Distribution of the diatoms in relation to land use and pH in blackwater coastal plain streams. Environmental Mangement 39: 369-384.
  69. Zelinka, M.& P. Marvan, 1961. Zur Prazisierung der biologischen Klassifikation der Reinheit fliessender Gewasser. Archive für Hydrobiologie 57: 389-407.
  70. Afnor, 2003. NF EN 13946. Qualité de l'eau. Guide pour l'échantillonnage en routine et le prétraitement des diatomées benthiques de rivières. Afnor 1-18.
  71. Agences de l'Eau, 2000. Système d'évaluation de la qualité de l'eau des cours d'eau -S.E.Q. Eau (Version 1), principes généreaux. Agence de l'Eau Loire-Bretagne, 1-21.
  72. Bailey, R. G., 1995. Description of the ecoregions of the United States. United States Department of Agriculture, Forest Service, 1-108.
  73. Beijerinck, M. W., 1913. De infusies en de ontdekking der bakterien. Jaarboek vande Koninklijke Akademie van Wetenschappen 1-28.
  74. Butcher, R. W., 1947. Studies in the ecology of rivers. IV. The algae of organically enriched water. Journal of Ecology 35: 186-191.
  75. Cantonati, M., 1998. Diatom communities of springs in the Southern Alps. Diatom Research 13: 201- 220. Cantonati, M., G. Corradini, I. Jüttner & E. J. Cox, 2001. Diatom assemblages in high mountain streams of the Alps and Himalaya. Nova Hedwigia 123: 37-61.
  76. Cemagref, 1982. Etude des méthodes biologiques quantitative d'appréciation de la qualité des eaux. 1-218.
  77. Coste, M.& L. Ector, 2000. Diatomées invasives exotiques ou rares en France: principales observation effectuées au cours des dernières décennies. Systematic and Geography of Plants 70: 373-400.
  78. Ector, L.& F. Rimet, 2005. Using bioindicators to assess rivers in Europe: An overview. In Lek, S., M. Scardi, P. Verdonschot, J. P. Descy & Y. S. Park (eds), Modelling community structure in aquatic ecosystems. Springer Verlag, 7-19.
  79. European commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities 327: 1-72.
  80. Finlay, B. J., E. B. Monaghan & S. C. Maberly, 2002. Hypothesis: The rate and scale of dispersal of freshwater diatom species is a function of their global abundance. Protist 153: 261-273.
  81. Fjerdingstad, E., 1950. The microflora of the river Molleaa with special reference to the relation of benthic algae to pollution. Folia Limnologica Scandinavica 5: 1-123.
  82. Grenier, M., S. Campeau, I. Lavoie, Y. S. Park & S. Lek, 2006. Diatom reference communities in Quebec (Canada) streams based on Kohonen self-organizing maps and multivariate analyses. Canadian Journal of Fisheries and Aquatic Sciences 63: 2087-2106.
  83. Hawkins, C. P., R. H. Norris, J. Gerritsen, R. M. Hughes, S. K. Jackson, R. K. Johnson & R. J. Stevenson, 2000. Evaluation of the use of landscape classifications for the prediction of freshwater biota: synthesis and recommendations. Journal of the North American Benthological Society 19: 541-556.
  84. Illies, J., 1978. Limnofauna europea, a checklist of the animals inhabiting European inland waters, with accounts to their distribution and ecology (except protozoa). Stuttgart.
  85. Jüttner, I., P. D. J. Chimonides, S. J. Ormerod & E. J. Cox, 2010. Ecology and biogeography of Himalayan diatoms: distribution along gradients of altitude, stream habitat and water chemistry. Fundamental and Applied Limnology 177: 293-311.
  86. Lavoie, I., S. Campeau, M. Grenier & P. J. Dillon, 2006. A diatom-based index for the biological assessment of eastern Canadian rivers: an application of correspondence analysis (CA). Canadian Journal of Fisheries and Aquatic Sciences 63: 1793-1811.
  87. Leira, M.& S. Sabater, 2005. Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Research 39: 73-82.
  88. Mann, D. G.& S. J. M. Droop, 1996. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336: 19-32.
  89. Ndiritu, G. G., N. N. Gichuki & L. Triest, 2006. Distribution of epilithic diatoms in response to environmental conditions in an urban tropical stream, Central Kenya. Biodiversity and Conservation 15: 3267-3293.
  90. Pan, Y., R. J. Stevenson, B. H. Hill & A. T. Herlihy, 2000. Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of the North American Benthological Society 19: 518- 540. Potapova, M.& D. F. Charles, 2002a. Benthic diatoms in USA rivers: distribution along spatial and environmental gradients. Journal of Biogeography 29: 167-187.
  91. Potapova, M. G.& D. F. Charles, 2002b. Benthic diatoms in USA rivers: distribution along spatial and environmental gradients. Journal of Biogeography 29: 167-187.
  92. Rimet, F., A. Couté, A. Piuz, V. Berthon & J. C. Druart, 2010. Achnanthidium druartii sp. nov. (Achnanthales, Bacillariophyta): A new species invading European rivers. Vie Milieu 60: 185-195.
  93. Rimet, F., L. Ector, H. M. Cauchie & L. Hoffmann, 2004. Regional distribution of diatom assemblages in the headwater streams of Luxembourg. Hydrobiologia 520: 105-117.
  94. Soininen, J., 2004. Benthic diatom community structure in boreal streams. Distribution patterns along environmental and spatial gradients. University of Helsinki, Helsinki, Finland, 1-46.
  95. Soininen, J., 2007. Environmental and spatial control of freshwater diatoms -A review. Diatom Research 22: 473-490.
  96. Spaulding, S. A., C. Kilroy & M. B. Edlund, 2010. Diatoms as non native species. In Smol, J. P. & E. F. Stoermer (eds), The diatoms: applications for the environmnetal and earth sciences, 2nd edition. 560-569.
  97. Tison, J., J. L. Giraudel, M. Coste, Y. S. Park & F. Delmas, 2004. The use of unsupervised neural networks for ecoregional zoning of hydrosystems through diatom cummunities: case study of Adour- Garonne watershed (France). Arch Hydrobiol 159: 409-422.
  98. Tison, J., Y. S. Park, M. Coste, J. G. Wasson, L. Ector, F. Rimet & F. Delmas, 2005. Typology of diatom communities and the influence of hydro-ecoregions: a study on the French hydrosystem scale. Water Research 39: 3177-3188.
  99. Tornes, E., J. Cambra, J. Goma, M. Leira, R. Ortiz & S. Sabater, 2007. Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. Annales de Limnologie-International Journal of Limnology 43: 1-11.
  100. Wasson, J. G., A. Chandesris, H. Pella & L. Blanc, 2002. Les hydro-écorégions de France métropolitaine. Approche régionale de la typologie des eaux courantes et éléments pour la définition des peuplements de référence d'invertébrés. Cemagref Lyon: 1-190.
  101. Zelinka, M.& P. Marvan, 1961. Zur Prazisierung der biologischen Klassifikation der Reinheit fliessender Gewasser. Arch. Hydrobiol. 57: 389-407.
  102. Anderson, N.J., 2000. Minireview: Diatoms, temperature and climatic change. European Journal of Phycology, 35, 307-314.
  103. Afnor, 2000. Norme Française NF T 90-354. Détermination de l'Indice Biologique Diatomées (IBD). 63 pp. Juin 2000, AFNOR, Paris.
  104. Apha, 1995. Standard methods for examination of water and wastewater. 19th edn. American Public Health Association, Washington.
  105. Bailey, R.G., Avers, P.E., King, T. & McNab, W.H., 1994. Ecoregions and subregions of the United States (map). Washington, DC: USDA Forest Service. 1:7,500,000. With supplementary table of map unit descriptions, compiled and edited by W. H. McNab and R. G. Bailey.
  106. Barbour, M.T., Gerritsen, J., Snyder, B.D. & Stribling, J.B., 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C. Berges, J.A., Varela, D.E. & Harrison, P.J., 2002. Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Marine Ecology Progress Series, 225, 139-146.
  107. Besch, W.K., Backhaus, D., Capblancq, J. & Lavandier, P., 1972. Données écologiques sur les algues benthiques de haute montagne dans les Pyrénées. I-Diatomées. Annals of Limnology, 8, 103-118.
  108. Butcher, R.W. (1947). Studies in the ecology of rivers. IV. The algae of organically enriched water. Journal of Ecology, 35, 186-191.
  109. Cantonati, M., 1998. Diatom communities of springs in the Southern Alps. Diatom Research, 13, 201- 220. Cantonati, M., Corradini, G., Jüttner, I. & Cox, E.J., 2001. Diatom assemblages in high mountain streams of the Alps and the Himalaya. Nova Hedwigia, 123, 37-61.
  110. Cemagref, 1982. Etude des méthodes biologiques d'appréciation quantitative de la qualité des eaux. 218 pp. Rapport Q.E. Lyon, Agence de l'Eau Rhône-Méditerranée-Corse -Cemagref, Lyon.
  111. Coste, M. & Ector, L., 2000. Diatomées invasives exotiques ou rares en France: principales observations effectuées au cours des dernières décénnies. Systematics and Geography of Plants, 70, 373-400.
  112. Ciutti, F., Cappelletti, C., Beltrami, M.E., Monauni, C., Pozzi, S., Rimet, F. & Ector, L., 2005.
  113. Distribution, écologie et expansion de Didymosphenia geminata dans le nord de l'Italie (Trentino). In: Livre des résumés du Colloque de l'Association des Diatomistes de Langue Française (J., Tison, M.H., Montel, M., Coste & L., Ector eds), p 45. Bordeaux.
  114. De Cáceres, M, Font, X., García, R. & Oliva, F., 2003a. VEGANA, un paquete de programas para la gestión y análisis de datos ecológicos. In: VII Congreso Nacional de la Asociación Española de Ecología Terrestre. 1484-1497. Barcelona.
  115. De Cáceres, M, Oliva, F. & Font, X., 2003b. GINKGO, a Multivariate Analysis Program Oriented Towards Distance-based Classifications. CARME -Correspondence Analysis and Related Methods. Barcelona, 2003. URL: http://biodiver.bio.ub.es/vegana/.
  116. Descy, J.P. & Coste, M., 1991. A test of methods for assessing water quality based on diatoms. Verhandlungen der Internationalen Vereinigung fur Limnologie, 24, 2112-2116.
  117. Dufrêne, M. & Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67, 345-366.
  118. Ector, L., Kingston, J.C., Charles, D.F., Denys, L., Douglas, M.S.V., Manoylov, K., Michelutti, N., Rimet, F., Smol, J.P., Stevenson, R.J. & Winter, J.G., 2004. Workshop report: Freshwater diatoms and their role as ecological indicators. In: Proceedings of the 17th International Diatom Symposium (M., Poulin ed.), 469-480. Biopress Limited, Bristol.
  119. Edlund, M.B. & Jahn R., 2001. Report of a workshop on "Biogeography and endemism of diatoms". In: Proceedings of the 16th International Diatom Symposium (A. Economou-Amilli ed.), 575-587. University of Athens, Faculty of Biology, Athens. European Parliament & The Council of the European Union, 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. Official Journal of the European Communities 327, 1-72.
  120. European Committee for Standardization, 2003. Guidance standard for the identification, enumeration and interpretation of benthic diatom samples from running waters. 12 pp. CEN/TC 230, EN 14407. European Committee for Standardization, 2002. Guidance standard for the routine sampling and pretreatment of benthic diatoms from rivers. 14 pp.CEN/TC 230, EN 13946.
  121. Gomà, J., Rimet, F., Cambra, J., Hoffmann, L. & Ector, L., 2005. Diatom communities and water quality assessment in high mountains rivers of the upper Segre basin (La Cerdanya, Oriental Pyrenees). Hydrobiologia, 551, 1-17.
  122. Hustedt, F., 1930. Bacillariophyta. Pascher's Süsswasserflora Mitteleuropas, 10, 1-468.
  123. Illies, J., 1978. Limnofauna Europea, a checklist of the animals inhabiting European inland waters, with accounts of their distribution and ecologie (except protozoa). 532 pp. Fischer Verlag, Stuttgart. Iserentant, R., Ector, L., Straub, F. & Hernández-Becerril, D.U., 1999. Méthodes et techniques de préparation des échantillons de diatomées. Cryptogamie, Algologie, 20, 143-148.
  124. Jüttner, I. & Cox, E.J., 2000. Diatom communities in streams from Kumaon Himalaya, North-West India. In: Proceedings of the 16th International Diatom Symposium (A. Economou-Amilli ed.), 237- 248. University of Athens, Faculty of Biology, Athens.
  125. Kawecka, B., 1980. The ecological characteristics of diatom communities in the mountain streams of Europe. In: Proceedings of the 6th International Diatom Symposium. 425-434. Koeltz Scientific Publishers, Koenigstein.
  126. Kelly, M.G., Cazaubon, A., Coring, E., Dell'Uomo, A., Ector, L., Goldsmith, B., Guasch, H., Hürlimann, J., Jarlman, A., Kawecka, B., Kwandrans, J., Laugaste, R., Lindstrøm, E.A., Leitao, M., Marvan, P., Padisák, J., Pipp, E., Prygiel, J., Rott, E., Sabater, S., van Dam, H. & Vizinet, J., 1998. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology, 10, 215-224.
  127. Kociolek, J.P. & Spaulding, S.A., 2000. Freshwater diatom biogeography. Nova Hedwigia, 71, 223-241.
  128. Krammer, K., 1997. Die cymbelloiden Diatomeen. Eine Monographie der weltweit bekannten Taxa. Teil 2. Encyonema part., Encyonopsis and Cymbellopsis. Bibliotheca Diatomologica, 37, 1-469.
  129. Krammer, K & Lange-Bertalot, H., 1986-1991. Bacillariophyceae 1. Teil: Naviculaceae; 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae;
  130. Teil: Centrales, Fragilariaceae, Eunotiaceae;
  131. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. -In: Süsswasserflora von Mitteleuropa (H., Ettl, G., Gärtner, J., Gerloff, H., Heynig & D., Mollenhauer eds). Gustav Fischer Verlag, Stuttgart, Germany.
  132. Krstic, S., Melovski, L., Levkov, Z. & Stojanovski, P., 1994. Complex investigations on the river Vardar. II. The most polluted sites in the first three months. Ekol. Zast. Zivot. Sred., 2, 13-29.
  133. Lange-Bertalot, H. (ed.) 2000-2003. Diatoms of the European inland waters and comparable habitats, vol. 1-4. Gantner Verlag, Berlin, Germany.
  134. Lange-Bertalot, H. (ed.) 1995-2004. Iconographia Diatomologica. Koeltz Scientific Books, Koenigstein, Germany. Leclercq, L., Rosillon, F., Vander Borght, P., Loncin, A. & El Mossaoui, M., 1996. Qualité chimique et biologique du bassin de la Semois (partie belge). Bulletin Français de Pêche et Pisciculture, 341-342, 81-108.
  135. Lecointe C., Coste, M. & Prygiel, J., 1993. "OMNIDIA": software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia, 269/270, 509-513.
  136. Leland, H.V. & Porter, S.D., 2000. Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Freshwater Biology, 44, 279-301.
  137. Lindstrom, E., 1999. Attempts to assess biodiversity of epilithic algae in running water in Norway. In: Use of algae for monitoring rivers III (J., Prygiel, B.A., Whitton & J., Bukowska eds), 253-260. Agence de l'Eau Artois-Picardie, Douai.
  138. MacCune, B. & Mefford, M.J., 1999. Multivariate analysis of ecological data. Version 4.01. MjM software, Gleneden Beach, Oregon, USA.
  139. MacQueen, J., 1967. Some methods for classification and analysis of multivariate observation. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability Vol. 1. (L.M., Le Cam & J., Neyman eds), 281-297. University of California Press, Berkeley.
  140. Maier, M. & Rott, E., 1988. The effect of local waste-water inflows on the structure of diatom assemblages in fast-flowing streams. In: Proceedings of the 10th Symposium on Recent and Fossil Diatoms (H., Simola ed.), 553-561. Koeltz Scientific Publishers, Koenigstein.
  141. Mann, D.G., 2000. Species complexes and flocks in diatoms. In: Abstracts of the 16th International Diatom Symposium. p. 84. Athens, Greece.
  142. Margalef, R., 1960. Ideas for a synthetic approach to the ecology of running waters. Internationale Revue der gesamten Hydrobiologie, 45, 133-153.
  143. Medlin, L.K. & Wilson, W.B., 1979. Effects of temperature and salinity on the growth of the benthic diatom Nitzschia ovalis Arnott (Bacillariophyceae). Contributions to Marine Sciences, 22, 127-136.
  144. Merino, V., García, J. & Hernàndez-Mariné, M., 1994. Use of diatoms for pollution monitoring in the Valira Basin (Andorra). In: Proceedings of the 13th International Diatom Symposium (D., Marino & M., Montressor eds), 107-119. Koeltz Scientific Publishers, Koenigstein.
  145. Munné, A. & Prat, N., 2005. Defining River Types in a Mediterranean Area: A Methodology for the Implementation of the EU Water Framework Directive. Environmental Management, 34, 711-729.
  146. Omernik, J.M., 1995. Ecoregions: a spatial framework for environmental management. In: Biological assessment and criteria. Tools for water resource planning and decision making (W.S., Davis & T.P., Simon eds), 49-62. Lewis Publishers, Boca Raton, Florida.
  147. Pan, Y., Stevenson, R.J., Hill, B.H. & Herlihy, A.T., 2000. Ecoregion and benthic diatom assemblages in Mid-Atlantic streams, USA. Journal of North American Benthological Society, 19, 518-540.
  148. Pipp, E. & Rott, E., 1994. Clasification of running-water sites in Austria based on benthic algal community structure. Verhandlungen der Internationalen Vereinigung fur Limnologie, 25, 1610-1613.
  149. Potapova, M. & Charles, D.F., 2004. Potential use of rare diatoms as environmental indicators in USA rivers. In: Proceedings of the 17th International Diatom Symposium (M., Poulin ed.), 281-295.
  150. Biopress Ltd, Bristol, United Kingdom.
  151. Potapova, M. & Charles, D.F., 2003. Distribution of benthic diatoms in US rivers in relation to conductivity and ionic composition. Freshwater Biology, 48, 1311-1328.
  152. Potapova, M.G. & Charles, D.F., 2002. Benthic diatoms in USA rivers: distribution along spatial and environmental gradients. Journal of Biogeography, 29, 167-187.
  153. Potapova, M., 1996. Epilithic algal communities in rivers of the Kolyma Mountains, NE Siberia, Russia. Nova Hedwigia, 63, 309-334.
  154. Prygiel, J., Whitton, B.A. & Bukowska, J., 1999. Use of algae for monitoring rivers III. 271 pp. Agence de l'Eau Artois-Picardie, Douai.
  155. Prygiel, J. & Coste, M., 1993. Utilisation des indices diatomiques pour la mesure de la qualité des eaux du bassin Artois-Picardie: bilan et perspectives. Annals of Limnology, 29, 255-267.
  156. Prygiel, J., 1991. Use of benthic diatoms in surveillance of the Artois-Picardie Basin hydrobiological quality. In: Use of Algae for monitoring rivers (B.A., Whitton, E., Rott & G., Friedrich eds), 89-96. Institut für Botanik, Universitat Innsbruck, Austria.
  157. Reichardt, E., 1997. Taxonomische Revision des Artenkomplexes um Gomphonema pumilum (Bacillariophyceae). Nova Hedwigia, 65, 99-129.
  158. Rimet, F., Cauchie, H.M., Tudesque, L. & Ector, L., 2005. Use of artificial intelligence (MIR-max) and chemical index to define type diatom assemblages in Rhône basin and Mediterranean region. In: Modelling community structure in aquatic ecosystems (S., Lek, M., Scardi, P.F.M., Verdonschot, J.P., Descy & Y.S., Park eds), 288-303. Springer Verlag.
  159. Rimet, F., Ector, L., Cauchie, H.M. & Hoffmann, L., 2004. Regional distribution of diatom assemblages in the headwater streams of Luxembourg. Hydrobiologia, 520, 105-117.
  160. Round, F.E., 1991. Diatoms in river water-monitoring studies. Journal of Applied Phycology, 3, 129- 145. Rothfritz, H., Jüttner, I., Suren, A.M. & Ormerod, S.J., 1997. Epiphytic and epilithic diatom communities along environmental gradients in the Nepalese Himalaya: implications for the assessment of biodiversity and water quality. Archiv fur Hydrobiologie, 138, 465-482.
  161. Rott, E., Pipp, E. & Pfsiter, P., 2003. Diatom methods developed for river quality assessment in Austria and crosscheck against numerical trophic indication methods used in Europe. Algological Studies, 110, 91-115.
  162. Soininen, J., 2004. Assessing the current related heterogeneity and diversity patterns of benthic diatom communities in a turbid and clean water river. Aquatic Ecology, 38, 495-501.
  163. Stevenson, R.J. & Pan, Y., 1999. Assessing environmental conditions in rivers and streams with diatoms. In: The Diatoms: Application for the environmental and Earth sciences (E.F., Stoermer & J.P., Smol eds), 11-40. Cambridge University Press, Cambridge.
  164. Tison, J., Giraudel, J.L., Coste, M., Park Y.S. & Delmas, F., 2004. Use of unsupervised neural networks for ecoregional zoning of hydrosystems through diatom communities: case study of Adour-Garonne watershed (France). Archiv für Hydrobiologie, 159, 409-422.
  165. Tison, J., Park, Y.S., Coste, M., Wasson, J.G., Ector, L., Rimet, F. & Delmas, F., 2005. Typology of diatom communities and the influence of hydro-ecoregion: a study on the French hydrosystem scale. Water Research, 39, 3177-3188.
  166. APHA, 1995. Standard Methods for Examination of Water and Wastewater, 19th ed. American Public Health Association,Washington, DC.
  167. Biondini, M. E., C. D. Bonham & E. F. Redente, 1985. Secondary successional patterns in a sagebrush (Artemisia tridentata) community as they relate to soil disturbance and soil biological activity. Vegetatio 60: 25-36.
  168. Cantonati, M., 1998. Diatom communities of springs in the Southern Alps. Diatom Research 13: 201- 220. Cemagref, 1982. Etude des méthodes biologiques quantitative d'appréciation de la qualité des eaux. Rapport Q.E.Lyon-A.F.Bassin Rhône-Méditerranée-Corse : 218 pp.
  169. Chandesris, A., J. G. Wasson, H. Pella, H. Sauquet & N. Mengin, 2006. Typologie des cours d'eau de France métropolitaine. Cemagref BEA/LHQ, Lyon: 62 pp.
  170. Coste, M., C. Bosca & A. Dauta, 1991. Use of algae for monitoring rivers in France. In Whitton, B. A., E. Rott & G. Fridriech (eds), Use of algae for monitoring rivers, Institut für Botanik, Universität Innsbruck: 75-83.
  171. Coste, M. & L. Ector, 2000. Diatomées invasives exotiques ou rares en France: principales observation effectuées au cours des dernières décennies. Systematic and Geography of Plants 70: 373-400.
  172. De Caceres, M., F. Oliva, X. Font & S. Vives, 2007. Ginkgo, a program for non-standard multivariate fuzzy analysis. Advances in Fuzzy Sets and Systems 2: 41-56.
  173. Dell'Uomo, A., 2004. L'indice diatomico di eutrofizzazione/polluzione (EPI-D) nel monitoraggio delle acque correnti -linee guida. Agenzia Regional per la Protezione dell'Aambiente e per i servizi Tecnici ; Agenzia Proviciale dell'Ambiente e per i servizi Tecnici : 101 pp.
  174. Descy, J. P. & M. Coste, 1991. A test of methods for assessing water quality based on diatoms. Verhandlungen internationale Vereinigung für theoretische und angewandte Limnologie 24: 2112- 2116.
  175. Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345-366.
  176. European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities 327: 1-72.
  177. Gosselain, V., M. Coste, S. Campeau, L. Ector, C. Fauville, F. Delmas, M. Knoflacher, M. Licursi, F. Rimet, J. Tison, L. Tudesque, J.P. Descy, 2005. A large-scale stream benthic diatom database. Hydrobiologia 542: 151-163.
  178. Hill, M. O., 1979. TWINSPAN-A FORTRAN program for arranging multivariate data in an ordered two- way table by classification of the individuals and attributes. Ithaca, NY: Ecology and Systematics, Cornell University.
  179. Illies, J. 1978. Limnofauna europea, a checklist of the animals inhabiting European inland waters, with accounts to their distribution and ecology (except protozoa). Stuttgart. 532 pp.
  180. Iserentant, R. & L. Ector, 1996. Gomphonema rhombicum M. Schmidt (Bacillariophyta) : typification et description en micrscopie optique. Bulletin Français de Peche et de Pisciculture 341/342: 115-124.
  181. Jüttner, J., S. Sharma, B.M. Dahal, S.J. Ormerod, P.J. Chimonides & E.J. Cox, 2003. Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India. Freshwater Biology 48: 2065-2084.
  182. Kelly, M. G., C. Bennett, M. Coste, C. Delgado, F. Delmas, L. Denys, L. Ector, C. Fauville, M. Ferréol, M. Golub, A. Jarlman, M. Kahlert, J. Lucey, B. Ni Chathain, I. Pardo, P. Pfister, J. Picinska-Faltynowicz, J. Rosebery, C. Schranz, J. Schaumburg, H. Van Dam, & J. Vilbaste 2008. A comparison of national approaches to setting ecological status boundaries in phytobenthos assessment for the European Water Framework Directive: results of an intercalibration exercise. Hydrobiologia 621: 169-182.
  183. Kelly, M. G. & B. A. Whitton, 1998. Biological monitoring of eutrophication in rivers. Hydrobiologia 384: 55-67.
  184. Kovács, C., M. Kahlert, & J. Padisák, 2006. Benthic diatom communities along pH and TP gradients in Hungarian and Swedish streams. Journal of Applied Phycology 18: 105-117.
  185. Krammer, K., 2000. Diatoms of the European Inland Waters and Comparable Habitats. Volume 1. The genus Pinnularia, Ruggell, Germany:Gantner Verlag, 2000. 703 pp.
  186. Krammer, K., 2001. Diatoms of the European Inland Waters and Comparable Habitats, Volume 2. Navicula sensu stricto, 10 Genera Separated from Navicula sensu stricto, Frustulia., Ruggell, Germany:Gantner Verlag. 526 pp.
  187. Krammer, K., 2002. Diatoms of the European Inland Waters and Comparable Habitats, Volume 3. Cymbella, Ruggell, Germany:Gantner Verlag. 584 pp.
  188. Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae 1. Teil: Naviculaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, 876 pp. Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, 596 pp.
  189. Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae. 3. Teil: Centrales Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Die Süßwasserflora von Mitteleuropa, Bd. 2. Gustav Fischer Verlag, Stuttgart, Jena: 576 pp.
  190. Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gesamtliteraturverzeichnis Teil 1-4. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, 437 pp.
  191. Leira, M. & S. Sabater, 2005. Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Research 39: 73-82.
  192. Lenoir, A. & M. Coste, 1996. Development of a practical diatom index of overall water quality applicable to the French national water board network. In Whitton, B. A. & E. Rott, E. (eds), Proceedings of Use of Algae for Monitoring Rivers II, Institut für Botanik, Universität Innsbruck: 29- 43. Manoylov, K. M., 2007. On some Psammothidium species from rivers in the United States. Diatom Research 22: 317-327.
  193. McCune, B. & J. Mefford, 2006. PC-ORD. Multivariate Analysis of Ecological Data. Version 5.18. MjM Software, Gleneden Beach, Oregon, U.S.A.
  194. Molloy, J. M., 1992. Diatom communities along stream longitudinal gradients. Freshwater Biology 28: 59-69.
  195. Monnier, O., F. Rimet, M. Bey, R. Chavaux & L. Ector, 2007. Sur l'identité de Cocconeis euglypta Ehrenberg 1854 et C. lineata Ehrenberg 1843 -Une approche par les sources historiques. Diatomania 11: 30-45.
  196. Ndiritu, G. G., N. N. Gichuki & L. Triest, 2006. Distribution of epilithic diatoms in response to environmental conditions in an urban tropical stream, Central Kenya. Biodiversity and Conservation 15: 3267-3293.
  197. Pan, Y., A. Herlihy, P. Kaufmann, J. Wigington, J. van Sickle & T. Moser, 2004. Linkage among land- use, water quality, physical habitat conditions and lotic assemblages: a multi-spatial scale assessment. Hydrobiologia 515: 59-73.
  198. Pan, Y., R. J. Stevenson, B. H. Hill & A. T. Herlihy, 2000. Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of the North American Benthological Society 19: 518- 540. Pan, Y., R. J. Stevenson, B. H. Hill, P. Kaufmann & A. Herlihy, 1999. Spatial patterns and ecological determinants of benthic algal assemblages in mid-Atlantic streams, USA. Journal of Phycology 35: 460-468.
  199. Passy, S. I., 2007. Differential cell size optimization strategies produce distinct diatom richness-body size relationships in stream benthos and plankton. Journal of Ecology 95: 745-754.
  200. Pierre, J. F., 1968. Etude hydrobiologique de la Meurthe. Contribution à l'écologie des populations algales. Bulletin de l'Académie Lorraine des Sciences 7: 261-412.
  201. Pierre, J. F., 1970. Hydrobiologie du Sanon : contribution à l'étude des affluents de la Meurthe. Bulletin de l'Académie Lorraine des Sciences 9: 534-542.
  202. Pierre, J. F., 2001. Catalogue des algues du Nord-est de la France et des régions attenantes 1959- 2001.
  203. Bulletin de l'Académie Lorraine des Sciences 40: 1-100.
  204. Potapova, M. & D. F., Charles, 2002. Benthic diatoms in USA rivers: distribution along spatial and environmental gradients. Journal of Biogeography 29: 167-187.
  205. Potapova, M. & D. F., Charles, 2003. Distribution of benthic diatoms in US rivers in relation to conductivity and ionic composition. Freshwater Biology 48: 1311-1328.
  206. Reichardt, E. 1997. Bermerkenswerte Diatomeenfunde aus Bayern. IV. Zwei neue Arten aus den Kleinen Ammerquellen. Berichte der Bayerischen Botanischen Gesellschaft zur Erforschung der Heimischen Flora 68: 61-66.
  207. Rimet, F., L. Ector, H. M. Cauchie & L. Hoffmann, 2004. Regional distribution of diatom assemblages in the headwater streams of Luxembourg. Hydrobiologia 520: 105-117.
  208. Rimet, F., J. Goma, J. Cambra, E. Bertuzzi, M. Cantonati, C. Cappelletti, F. Ciutti, A. Cordonier, M. Coste, F. Delmas, J. Tison, L. Tudesque, H. Vidal, & L. Ector, 2007. Benthic diatoms in western European streams with altitudes above 800 M: Characterisation of the main assemblages and correspondence with ecoregions. Diatom Research 22: 147-188.
  209. Rimet, F., D. Heudre, J.L. Matte, & P. Mazuer, 2006. Communautés de diatomées des bassins Moselle, Meuse et Sarre -Correspondance avec les Hydro-Ecorégions. Direction Régionale de l'Environnement -Lorraine, Metz, France: 51 pp.
  210. Round, F. E., 1991. Use of diatoms for monitoring rivers. In Whitton, B. A., E. Rott, & G. Friedriech (eds), Proceeding of Use of algae for monitoring rivers I. STUDIA Studentenf orderungs-Ges.m.b.H., Innsbruck: 25-32.
  211. Soininen, J., 2004a. Benthic diatom community structure in boreal streams. Distribution patterns along environmental and spatial gradients. Thesis, University of Helsinki, Finland: 46 pp.
  212. Soininen, J., 2004b. Determinants of benthic diatom community structure in boreal streams: the role of environmental and spatial factors at different scales. International Review of Hydrobiology 89: 139-150.
  213. Soininen, J., 2007. Environmental and spatial control of freshwater diatoms -A review. Diatom Research 22: 473-490.
  214. Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union 38: 913-920.
  215. Tison, J., M. Coste & F. Delmas, 2005a. Flores diatomiques des cours d'eau : proposition de valeurs limites du « Bon Etat » pour l'IPS et l'IBD. Ministère de l'Environnement et du Développement Durable,Direction de l'Eau : 20 pp.
  216. Tison, J., J. L. Giraudel, M. Coste, Y. S. Park & F. Delmas, 2004. Use of unsupervised neural networks for ecoregional zoning of hydrosystems through diatom communities: case study of Adour-Garonne watershed (France). Archiv für Hydrobiologie 159: 409-422.
  217. Tison, J., Y. S. Park, M. Coste, J. G. Wasson, L. Ector, F. Rimet & F. Delmas, 2005b. Typology of diatom communities and the influence of hydro-ecoregions: a study on the French hydrosystem scale. Water Research 39: 3177-3188.
  218. Tornes, E., J. Cambra, J. Goma, M. Leira, R. Ortiz & S. Sabater, 2007. Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. Annales de Limnologie -International Journal of Limnology 43: 1-11.
  219. Torrisi, M. C. & A. Dell'Uomo, 2006. Biological monitoring of some Apennine rivers (central Italy) using the diatom-based Eutrophication/Pollution Index (EPI-D) compared to other European diatom indices. Diatom Research 21: 159-174.
  220. Torrisi, M. C., A. Dell'Uomo & L. Ector, 2008. Assessment of quality of the Apennine rivers (Italy) using the diatom indices: the River Foglia. Cryptogamie Algologie 29: 45-61.
  221. Van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117-133.
  222. Wasson, J. G., A. Chandesris, H. Pella & L. Blanc, 2002. Les hydro-écorégions de France métropolitaine. Approche régionale de la typologie des eaux courantes et éléments pour la définition des peuplements de référence. Cemagref report, Lyon, France: 190 pp.
  223. Wasson, J. G., A. Chandesris, H. Pella, & Y. Souchon, 2001. Défintion des hydroécorégions françaises. Méthodologie de détermination des conditions de référence au sens de la Directive cadre pour la gestion des eaux. Cemagref report, Lyon, France: 35 pp.
  224. Weilhoefer, C. L. & Y. D. Pan, 2006. Diatom assemblages and their associations with environmental variables in Oregon Coast Range streams, USA. Hydrobiologia 561: 207-219.
  225. Whitton, B. A. 1991. Use of algae for monitoring rivers. Journal of Applied Phycology 3: 287-287.
  226. Whitton, B. A. & M. G. Kelly, 1995. Use of algae and other plants for monitoring rivers. Australian Journal of Ecology 20: 45-56.
  227. Witkowski, A., H. Lange-Bertalot & D. Metzeltin, 2000. Diatom flora of marine coast I. Iconographia Diatomologica 7: 1-925.
  228. Ziemann, H., 1971. Die Wirkung des Salzgehaltes auf die Diatomeenflora als Grundlage für eine biologische Analyse und Klassifikation der Binnengewässer. Limnologica 8:505-525.
  229. Ziemann, H., 1982. Indikatoren für den Salzgehalt der Binnengewässer -Halobiensystem. In Breitig, G. & W. von Tümpling (eds), Ausgewählte Methoden der Gewässeruntersuchung; II: Biologische, microbiologische und toxikologische Methoden. Jena, Germany.
  230. Ziemann, H., 1999. Salzgehalt. Bestimmung des Halobienindex. In Tümpling, V., W. Friedrich, & G. Friedrich (eds), Biologische Gewässeruntersuchung, Jena, Germany: 309-313. • References
  231. Afnor, 2000. Norme Française NF T 90-354 : Qualité de l'eau. Détermination de l'Indice Biologique Diatomées (IBD). Afnor 1-53.
  232. Afnor, 2007. NF T90-354. Qualité de l'eau. Détermination de l'Indice Biologique Diatomées (IBD). Afnor 1-79.
  233. Bowman, M. F. & R. C. Bailey, 1997. Does taxonomic resolution affect the multivariate description of the structure of freshwater benthic macroinvertebrate communities? Canadian Journal of Fisheries and Aquatic Sciences 54: 1802-1807.
  234. Carter, J. L. & V. H. Resh, 2001. After site selection and before data analysis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by U.S.A. state agencies. Journal of the North American Benthological Society 20: 658-682.
  235. Cattaneo, A., A. Asioli, P. Comoli & M. Manca, 1998. Organisms' response in a chronically polluted lake supports hypothesized link between stress and size. Limnology and Oceanography 43: 1938- 1943.
  236. Cattaneo, A., T. Kerimian, M. Roberge & J. Marty, 1997. Periphyton distribution and abundance on substrata of different size along a gradient of stream trophy. Hydrobiologia 354: 101-110.
  237. Chessman, B., I. Growns, J. Currey & N. Plunkett-Cole, 1999. Predicting diatom communities at the genus level for the rapid biological assessment of rivers. Freshwater Biology 41: 317-331.
  238. Coste, M., S. Boutry, J. Tison-Rosebery & F. Delmas, 2009. Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006). Ecological Indicators 9: 621- 650. DeNicola, D., 2000. A review of diatoms found in highly acidic environments. Hydrobiologia 433: 111- 122. Doledec, S., J. M. Olivier & B. Statzner, 2000. Accurate description of the abundance of taxa and their biological traits in stream invertebrate communities: effects of taxonomic and spatial resolution. Archiv fur Hydrobiologie 148: 25-43.
  239. Downes, B. J., J. S. Hindell & N. R. Bond, 2000. What's in a site? Variation in lotic macroinvertebrate density and diversity in a spatially replicated environment. Australian Journal of Ecology 25: 128-139.
  240. Ector, L., 2011. 1st European Workshop on Diatom Taxonomy (1st EWDT). Algological Studies 136/137: 1-4.
  241. Ector, L., D. Hlubikova, H. M. Cauchie & L. Hoffmann, 2009. 7th international "Use of algae for monitoring rivers symposium", 1st European Workshop on Diatom Taxonomy. Book of Abstracts, Centre de Recherche Public Gabriel-Lippmann, Luxembourg, 140 pp.
  242. Ector, L. & F. Rimet, 2005. Using bioindicators to assess rivers in Europe: An overview. In Lek, S., M. Scardi, P. Verdonschot, J. P. Descy & Y. S. Park (eds), Modelling community structure in aquatic ecosystems. Springer Verlag, 7-19.
  243. Evans, K. M., A. H. Wortley, G. E. Simpson, V. A. Chepurnov & D. G. Mann, 2008. A molecular systematic approach to explore diversity within the Sellaphora pupula species complex (Bacillariophyta). Journal of Phycology 44: 215-231.
  244. Feio, M. J., T. B. Reynolds & M. A. S. Garca, 2006. The influence of taxonomic level on the performance of a predictive model for water quality assessment. Canadian Journal of of Fisheries and Aquatic Sciences 63: 367-376.
  245. Growns, I., 1999. Is genus or species identification of periphytic diatoms required to determine the impacts of river regulation? Journal of Applied Phycology 11: 273-283.
  246. Hewlett, R., 2000. Implications of taxonomic resolution and sample habitat for stream classification at a broad geographic scale. Journal of the North American Benthological Society 19: 352-361.
  247. Hill, B. H., R. J. Stevenson, Y. D. Pan, A. T. Herlihy, P. R. Kaufmann & C. B. Johnson, 2001. Comparison of correlations between environmental characteristics and stream diatom assemblages characterized at genus and species levels. Journal of the North American Benthological Society 20: 299-310.
  248. Hoagland, K. D., S. C. Roemer & J. R. Rosowski, 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). American Journal of Botany 69: 188-213.
  249. Jones, F. C., 2008. Taxonomic sufficiency: The influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environmental Reviews 16: 45-69.
  250. Kahlert, M., R. L. Albert, E. L. Anttila, R. Bengtsson, C. Bigler, T. Eskola, V. Galman, S. Gottschalk, E. Herlitz, A. Jarlman, J. Kasperoviciene, M. Kokocinski, H. Luup, J. Miettinen, I. Paunksnyte, K. Piirsoo, I.
  251. Quintana, J. Raunio, B. Sandell, H. Simola, I. Sundberg, S. Vilbaste & J. Weckstrom, 2009. Harmonization is more important than experience-results of the first Nordic-Baltic diatom intercalibration exercise 2007 (stream monitoring). Journal of Applied Phycology 21: 471-482.
  252. Kociolek, J. P.& E. F. Stoermer, 2001. Taxonomy and ecology: A marriage of necessity. Diatom Research 16: 433-442.
  253. Lamb, M. A.& R. L. Lome, 1987. Effects of Current Velocity on the Physical Structuring of Diatom (Bacillariophyceae) communities. Ohio Journal of Sciences 87: 72-78.
  254. Lavoie, I., P. J. Dillon & S. Campeau, 2009. The effect of excluding diatom taxa and reducing taxonomic resolution on multivariate analyses and stream bioassessment. Ecological Indicators 9: 213-225.
  255. Lavoie, I., J. Lento & A. Morin, 2010. Inadequacy of size distributions of stream benthic diatoms for environmental monitoring. Journal of the North American Benthological Society 29: 586-601.
  256. Lenoir, A.& M. Coste, 1996. Development of a practical diatom index of overall water quality applicable to the french national water board network. In Whitton, B. A. & E. Rott (eds), Institüt für Botanik, Universität Innsbruck: 29-43.
  257. Levkov, Z., 2009. Amphora sensu lato. Diatoms of Europe 5: 1-916.
  258. Mann, D. G. & S. J. M. Droop, 1996. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336: 19-32.
  259. Mann, D. G., S. M. McDonald, M. M. Bayer, S. J. M. Droop, V. A. Chepurnov, R. E. Loke, A. Ciobanu & J. M. H. du Buf, 2004. The Sellaphora pupula species complex (Bacillariophyceae): morphometric analysis, ultrastructure and mating data provide evidence for five new species. Phycologia 43: 459- 482. Metzeling, L., S. Perriss & D. Robinson, 2006. Can the detection of salinity and habitat simplification gradients using rapid bioassessment of benthic macroinvertebrtes be improved through finer taxonomic resolution or alternative indices? Hydrobiologia 572: 235-252.
  260. Morales, E. A., 2002. Sixth NAWQA Taxonomy Workshop on Harmonization of Algal Taxonomy October 2001. The Patrick Center for Environmental Research, The Academy of Natural Sciences Benjamin Franklin, Parkway, Philadelphia, USA: 1-20.
  261. Mykra, H., J. Aroviita, H. Hamalainen, S. M. Karjalainen, M. Visuri, J. Riihimaki, J. Miettinen & K. M. Vuori, 2009. Utility of a single a priori river typology for reference conditions of boreal macroinvertebrates and diatoms. Fundamental and Applied Limnology 175: 269-280.
  262. Ndiritu, G. G., N. N. Gichuki & L. Triest, 2006. Distribution of epilithic diatoms in response to environmental conditions in an urban tropical stream, Central Kenya. Biodiversity and Conservation 15: 3267-3293.
  263. Pan, Y., R. J. Stevenson, B. H. Hill & A. T. Herlihy, 2000. Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of the North American Benthological Society: 518-540.
  264. Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171-178.
  265. Ponader, K. C., D. F. Charles, T. J. Belton & D. M. Winter, 2008. Total phosphorus inference models and indices for coastal plain streams based on benthic diatom assemblages from artificial substrates. Hydrobiologia 610: 139-152.
  266. Ponader, K. C. & M. G. Potapova, 2007. Diatoms from the genus Achnanthidium in flowing waters of the Appalachian Mountains (North America): Ecology, distribution and taxonomic notes. Limnologica 37: 227-241.
  267. Potapova, M. & D. F. Charles, 2002. Benthic diatoms in USA rivers: distribution along spatial and environmental gradients. Journal of Biogeography 29: 167-187.
  268. Pouličková, A., J. Vesela, J. Neustupa & P. Skaloud, 2010. Pseudocryptic Diversity versus Cosmopolitanism in Diatoms: a Case Study on Navicula cryptocephala Kutz. (Bacillariophyceae) and Morphologically Similar Taxa. Protist 3: 353-369.
  269. Pringle, C. M., 1990. Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algae. Ecology 71: 905-920.
  270. Raunio, J. & J. Soininen, 2007. A practical and sensitive approach to large river periphyton monitoring: comparative performance of methods and taxonomic levels. Boreal Environment Research 12: 55-63.
  271. Reynoldson, T. B., D. M. Rosenburg & V. H. Resh, 2001. Comparison of models predicting invertebrate assemblages for biomonitoring in the Fraser river catchment, British Colombia. Canadian Journal of Fisheries and Aquatic Sciences 58: 1395-1410.
  272. Rimet, F., 2009. Benthic diatom assemblages and their correspondence with ecoregional classifications: case study of rivers in north-eastern France. Hydrobiologia 636: 137-151.
  273. Rimet, F., J. Goma, J. Cambra, E. Bertuzzi, M. Cantonati, C. Cappelletti, F. Ciutti, A. Cordonier, M. Coste, F. Delmas, J. Tison, L. Tudesque, H. Vidal & L. Ector, 2007. Benthic diatoms in western European streams with altitudes above 800 M: Characterisation of the main assemblages and correspondence with ecoregions. Diatom Research 22: 147-188.
  274. Rott, E., G. Hofmann, K. Pall, P. Pfister & E. Pipp, 1997. Indikationslisten für Aufwuchsalgen Teil 1: Saprobielle indikation. Bundesministerium für Land-und Forstwirtschaft, Wien, Austria: 1-73.
  275. Rott, E., E. Pipp, P. Pfister, H. Van Dam, K. Ortler, N. Binder & K. Pall, 1998. Indikationslisten für aufwuchsalgen in Österrichischen fliessgewässern. Teil 2: Trophieindikation. Arbeitsgruppe Hydrobotanik, Institut für Botanik, Universität Innsbruck, Austria. 248 pp.
  276. Rumeau, A. & M. Coste, 1988. Initiation à la systematique des diatomées d'eau douce pour l'utilisation pratique d'un indice diatomique générique. Bulletin Français de Pêche et de Pisciculture 309: 1-69.
  277. Tison, J., J. L. Giraudel, M. Coste, Y. S. Park & F. Delmas, 2004. Use of unsupervised neural networks for ecoregional zoning of hydrosystems through diatom communities: case study of Adour-Garonne watershed (France). Archiv für Hydrobiologie 159: 409-422.
  278. Tison, J., Y. S. Park, M. Coste, J. G. Wasson, L. Ector, F. Rimet & F. Delmas, 2005. Typology of diatom communities and the influence of hydro-ecoregions: a study on the French hydrosystem scale. Water Research: 3177-3188.
  279. Trobajo, R., E. Clavero, V. Chepurnov, K. Sabbe, D. G. Mann, S. Ishihara & E. J. Cox, 2009. Morphological, genetic and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae). Phycologia 48: 443-459.
  280. Van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117-133.
  281. Vanelslander, B., V. Creach, P. Vanormelingen, A. Ernst, V. A. Chepurnov, E. Sahan, G. Muyzer, L. J. Stal, W. Vyverman & K. Sabbe, 2009. Ecological Differentiation Between Sympatric Pseudocryptic Species in the Estuarine Benthic Diatom Navicula Phyllepta (Bacillariophyceae). Journal of Phycology 45: 1278-1289.
  282. Vyverman, W., E. Verleyen, K. Sabbe, K. Vanhoutte, M. Sterken, D. A. Hodgson, D. G. Mann, S. Juggins, B. V. De Vijver, V. Jones, R. Flower, D. Roberts, V. A. Chepurnov, C. Kilroy, P. Vanormelingen & A. De Wever, 2007. Historical processes constrain patterns in global diatom diversity. Ecology 88: 1924-1931.
  283. Warwick, R. M., 1988. The level of determination required to detect pollution effects on marine benthic communities. Marine Ecology Progress Series 19: 259-268.
  284. Winter, J. G.& H. C. Duthie, 2000. Epilithic diaoms as indicators of stream total N and total P concentration. Journal of the North American Benthological Society: 32-49.
  285. Wu, J. T., 1999. A generic index of diatom assemblages as bioindicator of pollution in the Keelung River of Taiwan. Hydrobiologia 397: 79-87.
  286. Wunsam, S., A. Cattaneo & N. Bourassa, 2002. Comparing diatom species, genera and size in biomonitoring: a case study from streams in the Laurentians (Quebec, Canada). Freshwater Biology 47: 325-340.
  287. Zampella, R. A., K. J. Laidig & R. L. Lowe, 2007. Distribution of diatoms in relation to land use and pH in blackwater coastal plain streams. Environmental Management 39: 369-384.
  288. Coste, M., Boutry, S., Tison-Rosebery, J., Delmas, F., 2009. Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006). Ecological Indicators 9, 621- 650.
  289. Cranston,P.S., 1990. Biomonitoring and invertebrate taxonomy. Environmental Monitoring and Assessment 14, 265-273.
  290. Crawford, C.G., Wangsness, D.J., Martin, J.D., 1992. Recovery of benthic-invertebrate communities in the White River near Indianapolis, Indiana, USA, following implementation of advanced treatment of municipal wastewater. Archiv fur Hydrobiologie 126, 67-84.
  291. DeCaceres, M., Oliva, F., Font, X., Vives, S., 2007. Ginkgo, a program for non-standard multivariate fuzzy analysis. Advances in Fuzzy Sets and Systems 2, 41-56.
  292. Dell'Uomo, A. 2004. L'indice diatomico di eutrofizzazione/polluzione (EPI-D) nel monitoraggio delle acque correnti -linee guida. Agenzia Regional per la Protezione dell'Aambiente e per i servizi Tecnici, Italy. 101 pp.
  293. DeNicola, D.M., 2000. A review of diatoms found in highly acidic environments. Hydrobiologia 433, 111-122.
  294. Di Dato, P., Rimet, F., Tudesque, L., Ector, L., Scardi, M., 2005. Use of neural network models to predict diatom assemblages in the Loire-Bretagne basin (France). In: Lek, S., Scardi, M., Verdonschot, P., Descy, J.P., Park, Y.S. (eds), Modelling community structure in aquatic ecosystems. 355-365, Springer Verlag.
  295. Doledec, S., Olivier, J.M., Statzner, B., 2000. Accurate description of the abundance of taxa and their biological traits in stream invertebrate communities: effects of taxonomic and spatial resolution. Archiv fur Hydrobiologie 148, 25-43.
  296. Downes, B.J., Hindell, J.S., Bond, N.R., 2000. What's in a site? Variation in lotic macroinvertebrate density and diversity in a spatially replicated environment. Australian Journal of Ecology 25, 128-139.
  297. Ector, L., Hlubikova, D., Cauchie, H. M., Hoffmann, L. 2009. 7th international "Use of algae for monitoring rivers symposium". Luxembourg. Conference Proceeding. 140pp. European commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities 327, 72pp.
  298. Evans, K.M., Wortley, A.H., Simpson, G.E., Chepurnov, V.A., Mann, D.G., 2008. A molecular systematic approach to explore diversity within the Sellaphora pupula species complex (bacillariophyta). Journal of Phycology 44, 215-231.
  299. Feio, M.J., Reynolds, T.B., Garca, M.A.S., 2006. The influence of taxonomic level on the performance of a predictive model for water quality assessment. Canadian Journal of Fisheries and Aquatic Sciences 63, 367-376.
  300. Growns, I., 1999. Is genus or species identification of periphytic diatoms required to determine the impacts of river regulation? Journal of Applied Phycology 11, 273-283.
  301. Hewlett,R., 2000. Implications of taxonomic resolution and sample habitat for stream classification at a broad geographic scale. Journal of the North American Benthological Society 19, 352-361.
  302. Hill B.H., Stevenson R.J., Pan Y.D., Herlihy A.T., Kaufmann P.R., Johnson C.B., 2001. Comparison of correlations between environmental characteristics and stream diatom assemblages characterized at genus and species levels. Journal of the North American Benthological Society 20, 299-310.
  303. Hubert, L., Arabie, P., 1985. Comparing partitions. Journal of Classification 2, 193-218.
  304. Jones, F.C., 2008. Taxonomic sufficiency: The influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environmental Reviews 16, 45-69.
  305. Juggins, S., 2010. C2 Software for ecological and palaeoecological data analysis and visualization. Newcastle University, UK. http://www.staff.ncl.ac.uk/staff/stephen.juggins/ Kahlert, M., Albert, R.L., Anttila, E.L., Bengtsson, R., Bigler, C., Eskola, T., Galman, V., Gottschalk, S., Herlitz, E., Jarlman, A., Kasperoviciene, J., Kokocinski, M., Luup, H., Miettinen, J., Paunksnyte, I., Piirsoo, K., Quintana, I., Raunio, J., Sandell, B., Simola, H., Sundberg, I., Vilbaste, S., Weckstrom,J., 2009. Harmonization is more important than experience-results of the first Nordic-Baltic diatom intercalibration exercise 2007 (stream monitoring). Journal of Applied Phycology 21, 471-482.
  306. Kawecka,B., 1985. Ecological characteristics of sessile algal communities in the Olczyski stream (Tatra Mts, Poland) with special consideration of light and temperature. Acta Hydrobiologica 27, 299-310.
  307. Kociolek J.P. 2005. Taxonomy and ecology: further considerations. Proceedings of the California Academy of Sciences 56: 99-106.
  308. Kovacs, C., Kahlert, M., Padisák, J., 2006. Benthic diatom communities along pH and TP gradients in Hungarian and Swedish streams. Journal of Applied Phycology 18, 105-117.
  309. Krammer, K., Lange-Bertalot, H., 1986-1991. Bacillariophyceae 1. Teil: Naviculaceae. 876 p.; 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, 596 p.; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, 576 p.; 4. Teil: Achnanthaceae. Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema. 437 p. In: Susswasserflora von Mitteleuropa .Band 2/1-4 -Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), G. Fischer verlag., Stuttgart.
  310. Lamb, M.A., Lome, R.L., 1987. Effects of Current Velocity on the Physical Structuring of Diatom (Bacillariophyceae) communities. Ohio Journal of Sciences 87, 72-78.
  311. Lavoie, I., Campeau, S., Grenier, M., Dillon, P.J., 2006. A diatom-based index for the biological assessment of eastern Canadian rivers: an application of correspondence analysis (CA). Canadian Journal of Fisheries and Aquatic Sciences 63, 1793-1811.
  312. Lavoie, I., Dillon, P.J., Campeau, S., 2009. The effect of excluding diatom taxa and reducing taxonomic resolution on multivariate analyses and stream bioassessment. Ecological Indicators 9, 213-225.
  313. Lecointe, C., Coste, M., Prygiel, J., 1993. "Omnidia": software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269/270, 509-513.
  314. Leland, H.V., Porter, S.D., 2000. Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Freshwater Biology 44, 279-301.
  315. Lenoir, A., Coste, M., 1996. Development of a practical diatom index of overall water quality applicable to the french national water board network. In: Proceedings of Use of Algae for Monitoring Rivers 2 -Whitton B.A., Rott E. (Eds.) Institut für Botanik, Universität Innsbruck. pp. 29- 43.
  316. Mann, D.G., McDonald, S.M., Bayer, M.M., Droop, S.J.M., Chepurnov, V.A., Loke, R.E., Ciobanu, A., du Buf, J.M.H., 2004. The Sellaphora pupula species complex (Bacillariophyceae): morphometric analysis, ultrastructure and mating data provide evidence for five new species. Phycologia 43, 459- 482. McCune, B., Mefford, J., 2006. PC-ORD. Multivariate Analysis of Ecological Data. Version 5.18. MjM Software, Gleneden Beach, Oregon, U.S.A.
  317. Metzeling, L., Perriss, S., Robinson, D., 2006. Can the detection of salinity and habitat simplification gradients using rapid bioassessment of benthic macroinvertebrtes be improved through finer taxonomic resolution or alternative indices? Hydrobiologia 572, 235-252.
  318. Morales, E. A., 2002. Sixth NAWQA Taxonomy Workshop on Harmonization of Algal Taxonomy October 2001. Report No. 02-10, The Patrick Center for Environmental Research, Academy of Natural Sciences Benjamin Franklin, Philadelphia, USA. 20 pp.
  319. Morales, E.A., Siver, P.A., Trainor, F.R., 2001. Identification of diatoms (Bacillariophyceae) during ecological assessments: Comparison between Light Microscopy and Scanning Electron Microscopy techniques. Proceedings of the Academy of Natural Sciences of Philadelphia 151, 95-103.
  320. Munn, M.D., Black, R.W., Gruber, S.J., 2002. Response of benthic algae to environmental gradients in an agricultural dominated landscape. Journal of the North American Benthological Society 21, 221- 237. Mykra, H., Aroviita, J., Hamalainen, H., Karjalainen, S.M., Visuri, M., Riihimaki, J., Miettinen, J., Vuori, K.M., 2009. Utility of a single a priori river typology for reference conditions of boreal macroinvertebrates and diatoms. Fundamental and Applied Limnology 175, 269-280.
  321. Ndiritu, G.G., Gichuki, N.N., Triest, L., 2006. Distribution of epilithic diatoms in response to environmental conditions in an urban tropical stream, Central Kenya. Biodiversity and Conservation 15, 3267-3293.
  322. Norris, R.H. Georges, A., 1993. Analysis and interpretation of benthic macroinvertebrates surveys. In: Rosenberg,D.M. and Resh,V.H. (eds), 234-286, Chapman and Hall, New-York.
  323. Pan, Y., Stevenson, R.J., Hill, B.H., Herlihy, A.T., 2000. Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of the North American Benthological Society 19, 518- 540. Passy,S.I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86, 171-178.
  324. Patrick, R., Palavage, D.M., 1994. The Value of Species as Indicators of Water Quality. Proceedings of the Academy of Natural Sciences of Philadelphia 145, 55-92.
  325. Ponader K.C., Charles D.F., Belton T.J., Winter D.M., 2008. Total phosphorus inference models and indices for coastal plain streams based on benthic diatom assemblages from artificial substrates. Hydrobiologia 610,139-152.
  326. Ponader, K.C., Potapova M., 2007. Diatoms from the genus Achnanthidium in flowing waters of the Appalachian mountains (North America): Ecology, distribution and taxonomic notes. Limnologica 37, 227-241.
  327. Potapova, M., Charles, D.F., 2002. Benthic diatoms in USA rivers: distribution along spatial and environmental gradients. Journal of Biogeography 29, 167-187.
  328. Potapova, M., Charles, D.F., 2004. Potential use of rare diatoms as environmental indicators in USA rivers. In. Poulin, M. (Ed.). Biopress Limited, Bristol. Proceedings of the 17th International diatom symposium. 281-295.
  329. Raunio, J., Soininen, J., 2007. A practical and sensitive approach to large river periphyton monitoring: comparative performance of methods and taxonomic levels. Boreal Environment Research 12,55-63.
  330. Reynoldson, T.B., Rosenburg, D.M., Resh, V.H., 2001. Comparison of models predicting invertebrates assemblages for biomonitoring in the Fraser River catchment. Canadian Journal of Fisheries and Aquatic Sciences 58, 1395-1410.
  331. Rimet, F., 2009. Benthic diatom assemblages and their correspondence with ecoregional classifications: case study of rivers in north-eastern France. Hydrobiologia 636, 137-151.
  332. Rimet, F., Ector, L., Cauchie, H.M., Hoffmann, L., 2004. Regional distribution of diatom assemblages in the headwater streams of Luxembourg. Hydrobiologia 520, 105-117.
  333. Rimet, F., Goma, J., Cambra, J., Bertuzzi, E., Cantonati, M., Cappelletti, C., Ciutti, F., Cordonier, A., Coste, M., Delmas, F., Tison, J., Tudesque, L., Vidal, H., Ector, L., 2007. Benthic diatoms in western European streams with altitudes above 800 M: Characterisation of the main assemblages and correspondence with ecoregions. Diatom Research 22, 147-188.
  334. Round, F.E., Crawford, R.M., Mann, D.G., 1990. The diatoms. Biology, morphology of the genera. Cambridge University Press. 747 pp.
  335. Rumeau, A., Coste, M., 1988. Initiation à la systematique des diatomées d'eau douce pour l'utilisation pratique d'un indice diatomique générique. Bulletin Français de Pêche et Pisciculture, 309, 1-69.
  336. Smucker,N.J., Vis M.L., 2009. Use of diatoms to assess agricultural and coal mining impacts on streams and a multiassemblage case study. Journal of the North American Benthological Society, 28, 659-675.
  337. Song, X., 2007. Trends in benthic algal community response to a small-scale gradient of current velocities along a streambed transect. College of Bowling Green State University, United States. 37 pp. Stevenson, R.J., Bahls, L.L., 2002. Rapid bioassessment protocols for use in strams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. 2nd edition. Periphyton protocols. Barbour, M.T., Gerritsen, J., Snyder, B.D., Tribling, J.B. (eds). US EPA. 23 pp.
  338. Strahler, A.N., 1963. The earth sciences. Fluvial processes in geomorphology. In: Freeman, San Francisco, CA.
  339. Ter Braak, C.J.F., 1990. Update Notes: CANOCO Version 3.10. Agricultural Mathematics Group. Wageningen, Netherlands. 35 pp.
  340. Tison, J., Giraudel, J.L., Coste, M., Park, Y.S., Delmas, F., 2004. The use of unsupervised neural networks for ecoregional zoning of hydrosystems through diatom cummunities: case study of Adour- Garonne watershed (France). Archive fur Hydrobiologie 159, 409-422.
  341. Tison, J., Park, Y.S., Coste, M., Wasson, J.G., Ector, L., Rimet, F., Delmas, F., 2005. Typology of diatom communities and the influence of hydro-ecoregions: a study on the French hydrosystem scale. Water Research 39, 3177-3188.
  342. Trobajo, R., Clavero, E., Chepurnov, V., Sabbe, K., Mann, D.G., Ishihara, S., Cox, E.J., 2009. Morphological, genetic and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae). Phycologia 48, 443-459.
  343. Van Dam, H., Mertens, A., Sinkeldam, J., 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28, 117-133.
  344. Van De Vijver, B., Frenot, Y., Beyens, L., 2002. Freshwater diatoms from Ile de la Possession (Crozet Archipelago, Subantarctica). Bibliotheca Diatomologica 46, 1-412.
  345. Vanormelingen, P., Verleyen, E., Vyverman, W., 2007. The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodiversity and Conservation 17, 393-405.
  346. Verleyen, E., Vyverman, W., Sterken, M., Hodgson, D.A., DeWever, A., Juggins, S., DeVijver, B., Jones, V.J., Vanormelingen, P., Roberts, D., Flower, R., Kilroy, C., Souffreau, C., Sabbe, K., 2009. The importance of dispersal related and local factors in shaping the taxonomic structure of diatom metacommunities. Oikos 118, 1239-1249.
  347. Villeneuve, A., Montuelle, B., Bouchez, A., 2010. Influence of slight differences in environmental conditions (light, hydrodynamics) on the structure and function of periphyton. Aquatic Sciences, 72, 33-44.
  348. Vyverman, W., Verleyen, E., Sabbe, K., Vanhoutte, K., Sterken, M., Hodgson, D.A., Mann, D.G., Juggins, S., DeVijver, B.V., Jones, V., Flower, R., Roberts, D., Chepurnov, V.A., Kilroy, C., Vanormelingen, P., DeWever, A., 2007. Historical processes constrain patterns in global diatom diversity. Ecology 88, 1924-1931.
  349. Warwick, R.M., 1988. The level of determination required to detect pollution effects on marine benthic communities. Marine Ecology Progress Series 19, 259-268.
  350. Wasson, J.G., Chandesris, A., Pella, H., Blanc, L., 2002. Les hydro-écorégions de France métropolitaine. Approche régionale de la typologie des eaux courantes et éléments pour la définition des peuplements de référence d'invertébrés. Cemagref report, Lyon, France. 190 pp.
  351. Whitton, B.A., Kelly, M.G., 1995. Use of Algae and Other Plants for Monitoring Rivers. Australian Journal of Ecology 20, 45-56.
  352. Winter, J.G., Duthie, H.C., 2000. Epilithic diatoms as indicators of stream total N and total P concentration. Journal of the North American Benthological Society 19, 32-49.
  353. Wu, J.T., 1999. A generic index of diatom assemblages as bioindicator of pollution in the Keelung River of Taiwan. Hydrobiologia 397, 79-87.
  354. Wunsam, S., Cattaneo, A., Bourassa, N., 2002. Comparing diatom species, genera and size in biomonitoring: a case study from streams in the Laurentians (Quebec, Canada). Freshwater Biologu 47, 325-340.
  355. Zampella, R.A., Laidig, K.J., Lowe, R.L., 2007. Distribution of diatoms in relation to land use and pH in blackwater coastal plain streams. Environmnetal Management 39, 369-384. • References
  356. Afnor, 2007. NF T90-354. Qualité de l'eau. Détermination de l'Indice Biologique Diatomées (IBD). Afnor 1-79.
  357. Agences de l'Eau, 2000. Système d'évaluation de la qualité de l'eau des cours d'eau -S.E.Q. Eau (Version 1), principes généraux. Agence de l'Eau Loire-Bretagne. Les études des Agences de l'Eau 64, 1-21.
  358. Allanson, B. R., 1973. The fine structure of the periphyton of Chara sp. and Potamogeton natans from Wytham Pond, Oxford, and its significance to the macrophyte-periphyton metabolic model of R.G. Wetzel and H.L. Allen. Freshwater Biology 3: 535-542.
  359. APHA, 1995. Standard Methods for Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington, DC.
  360. Besse-Lotoskaya, A., P.F.M. Verdonschot, M. Coste & B. Van de Vijver, 2008. Evaluation of European diatom trophic indices. Ecological Indicators 11: 456-467.
  361. Cattaneo, A., T. Kerimian, M. Roberge & J. Marty, 1997. Periphyton distribution and abundance on substrata of different size along a gradient of stream trophy. Hydrobiologia 354: 101-110.
  362. Cemagref, 1982. Etude des méthodes biologiques quantitative d'appréciation de la qualité des eaux. Rapport Q.E.Lyon-A.F.Bassin Rhône-Méditerranée-Corse, 218 pp.
  363. Coste, M. & H. Ayphassorho, 1991. Etude de la qualité des eaux du bassin Artois-Picardie à l'aide des communautés de diatomées benthiques (application des indices diatomiques). Rapport Cemagref Bordeaux -Agence de l'Eau Artois -Picardie, 227 pp.
  364. Coste, M., S. Boutry, J. Tison-Rosebery & F. Delmas, 2009. Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006). Ecological Indicators 9: 621- 650. Devito, J., J. M. Meik, M. M. Gerson & D. R. Formanowicz, 2004. Physiological tolerances of three sympatric riparian wolf spiders (Araneae: Lycosidae) correspond with microhabitat distributions. Canadian Journal of Zoology 82: 1119-1125.
  365. Ector, L., J. C. Kingston, D. F. Charles, L. Denys, M. S. V. Douglas, K. Manoylov, N. Michelutti, F. Rimet, J. P. Smol, R. J. Stevenson & J. G. Winter, 2004. Freshwater diatoms and their role as ecological indicators, in: Poulin, M. (Ed.), Proceedings of the 17th International Diatom Symposium. Biopress Limited, Bristol, pp. 469-480.
  366. European Committee for Standardisation, 2002. EN 13946 Water quality. Guidance standard for the routine sampling and pretreatment of benthic diatoms from rivers, 18 pp. European commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities 327, 1-72.
  367. Germain, H., 1981. Flore des Diatomées, Diatomophycées, eaux douces et saumâtres du Massif Armoricain et des contrées voisines d'Europe occidentale, Boubée, Paris, 444 pp.
  368. Hillebrand, H., C. D. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403-424.
  369. Hoagland, K. D., S. C. Roemer & J. R. Rosowski, 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). American Journal of Botany 69: 188-213.
  370. Hudon, C. & P. Legendre, 1987. The ecological implications of growth forms in epibenthic diatoms. Journal of Phycology 23: 434-441.
  371. Irwin, A.J., Z.V. Finkel, O.M.E. Schofield & P.G. Falkowski, 2006. Scaling-up from nutrient physiology to the size structure of phytoplankton communities. Journal of Plankton Research 28: 459-471.
  372. Johnson, R.E., N.C. Tuchman & C.G. Peterson, 1997. Changes in the vertical microdistribution of diatoms within a developing periphyton mat. Journal of the North American Benthological Society 16: 503-519.
  373. Kawecka, B., 1985. Ecological characteristics of sessile algal communities in the Olczyski stream (Tatra Mts, Poland) with special consideration of light and temperature. Acta Hydrobiologica 27: 299-310.
  374. Katoh, K., 1992. Correlation between cell density and dominant growth form of epilithic diatom assemblages. Diatom Research 7: 77-86.
  375. Kelly, M. G., 2003. Short term dynamics of diatoms in an upland stream and implications for monitoring eutrophication. Environmental Pollution 125: 117-122.
  376. Koshmanesh, A., F. Lawson & I. G. Prince, 1997. Cell surface area as a major parameter in the uptake of cadmium by unicelular green microalgae. Chemical Engineering Journal 65: 13-19.
  377. Krammer, K., 2000. Diatoms of the European Inland Waters and Comparable Habitats. Volume 1. The genus Pinnularia. Gantner Verlag, Ruggell, Germany.
  378. Krammer, K., 2001. Diatoms of the European Inland Waters and Comparable Habitats, Volume 2. Navicula sensu stricto, 10 Genera Separated from Navicula sensu stricto, Frustulia. Gantner Verlag, Ruggell, Germany.
  379. Krammer, K., 2002. Diatoms of the European Inland Waters and Comparable Habitats, Vol. 3. Cymbella. Gantner Verlag, Ruggell, Germany.
  380. Krammer, K., 2003. Diatoms of the European Inland Waters and Comparable Habitats, Vol. 4.
  381. Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. Gantner Verlag, Ruggell, Germany. Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae 1. Teil: Naviculaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süß-wasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart.
  382. Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süß-wasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart.
  383. Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae. 3. Teil: Centrales Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Die Süß-wasserflora von Mitteleuropa, Bd. 2. Gustav Fischer Verlag, Stuttgart.
  384. Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gesamtliter-aturverzeichnis Teil 1-4. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süß-wasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart.
  385. Lavoie I., J. Lento & A. Morin, 2010. Inadequacy of size distributions of stream benthic diatoms for environmental monitoring. Journal of the North American Benthological Society 29: 586-601.
  386. Lecointe, C., M. Coste & J. Prygiel, 1993. "Omnidia": software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269/270: 509-513.
  387. Leira, M., G. Chen, C. Dalton, K. N. Irvine & D. H. Taylor, 2009. Patterns in freshwater diatom taxonomic distinctness along an eutrophication gradient. Freshwater Biology 54: 1-14.
  388. Li, W. K. W., 2002. Macroecological patterms of phytoplancton in the northwestern North Atlantic Ocean. Nature 419: 154-157.
  389. Luttenton, M. L., J. B. Vansteenburg & R. G. Rada, 1986. Phycoperiphyton in selected reaches of the Upper Mississippi River: community composition, architecture, and productivity. Hydrobiologia 136: 31-45.
  390. Mann, D. G. & S. J. M. Droop, 1996. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336: 19-32.
  391. Mann, D. G., S. J. Thomas, K. M. Evan, 2008. Revision of the diatom genus Sellaphora: a first account of the larger species in the British Isles. Fottea 8: 15-78.
  392. McCune, B. & J. Mefford., 2006. PC-ORD. Multivariate Analysis of Ecological Data. Version 5.18. MjM Software, Gleneden Beach, Oregon, U.S.A.
  393. Mulholland, P. J., J. W. Elwood, A. V. Palumbo & R. J. Stevenson, 1986. Effect of stream acidification on periphyton composition, chlorophyll, and productivity. Canadian Journal of Fisheries and Aquatic Sciences 43: 1846-1858.
  394. Passy, S., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171-178.
  395. Pouličková A., J. Spackov, M. G. Kelly, M. Duchoslav & D.G. Mann, 2008. Ecological variation within Sellaphora species complexes (Bacillariophyceae): specialists or generalists? Hydrobiologia 614: 373- 386. Pringle, C. M., 1990. Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algae. Ecology 71: 905-920.
  396. Rimet, F., L. Ector, H. M. Cauchie & L. Hoffmann, 2004. Regional distribution of diatom assemblages in the headwater streams of Luxembourg. Hydrobiologia 520: 105-117.
  397. Rimet F., 2009. Benthic diatom assemblages and their correspondence with ecoregional classifications: case study of rivers in north-eastern France. Hydrobiologia 636: 137-151.
  398. Rimet, F., L. Ector, H. M. Cauchie & L. Hoffman, 2009. Changes in diatom-dominated biofilms during simulated improvements in water quality: implications for diatom-based monitoring in rivers. European Journal of Phycology 44: 567-577.
  399. Robinson, C. T. & S. R. Rushforth, 1987. Effects of Physical Disturbance and Canopy Cover on Attached Diatom Community Structure in an Idaho Stream. Hydrobiologia 154: 49-59.
  400. Round, F. E., R. M. Crawford & D. G. Mann, 1990. The diatoms. Biology, morphology of the genera. Cambridge University Press, 747 pp.
  401. Rumeau, A. & M. Coste, 1988. Initiation à la systématique des diatomées d'eau douce pour l'utilisation pratique d'un indice diatomique générique. Bulletin Français de la Pêche et de la Pisciculture 309, 1-69.
  402. Sabbe, K., K. Vanhoutte, R. L. Lowe, E. A. Bergey, B. J. F. Biggs, S. Francoeur, D. Hodgson & W. Vyverman, 2001. Six new Actinella (Bacillariophyta) species from Papua New Guinea, Australia and New Zealand: further evidence for widespread diatom endemism in the Australasian region. European Journal of Phycology 36: 321-340.
  403. Stevenson, R. J. & L. L. Bahls, 1999. Periphyton protocols, in: Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling. (eds). Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C. Trobajo, R., D. G. Mann & E. J. Cox, 2005. Reproduction in Nitzschia fonticola: the Importance of Studying the Entire Life Cycle in Diatoms. Phycologia 44: 103.
  404. Van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Aquatic Ecology 28: 117-133.
  405. Wunsam, S., A. Cattaneo & N. Bourassa, 2002. Comparing diatom species, genera and size in biomonitoring: a case study from streams in the Laurentians (Quebec, Canada). Freshwater Biology 47: 325-340.
  406. Berthon, V., A. Bouchez & F. Rimet, 2011. Use of diatom life-forms and ecological guilds to assess pollution in rivers: case study of south-eastern french rivers. Hydrobiologia 673: 259-271.
  407. Bouchez, A., F. Rimet, T. Caquet & M. Roucaute, 2010. Des bioindicateurs pour évaluer l'impact ou la restauration vis-à-vis des pesticides -Rapport d'étape, INRA Thonon, ONEMA, France. 52 pp.
  408. Cattaneo, A., A. Asioli, P. Comoli & M. Manca, 1998. Organisms' response in a chronically polluted lake supports hypothesized link between stress and size. Limnology and Oceanography 43: 1938- 1943.
  409. Cattaneo, A., Y. Couillard, S. Wunsam & M. Courcelles, 2004. Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). Journal of Paleolimnology 32: 163-175.
  410. Cazaubon, A., 1988. Crue et communautés diatomiques (Moyenne-Durance, Provence). Cahiers de Biologie Marine 29: 233-246.
  411. Coste, M., S. Boutry, J. Tison-Rosebery & F. Delmas, 2009. Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006). Ecological Indicators 9: 621- 650. Dorigo, U., X. Bourrain, A. Bérard & C. Leboulanger, 2004. Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. The Science of the Total Environment 318: 101-114.
  412. Dorigo, U., C. Leboulanger, A. Bérard, A. Bouchez, J. F. Humbert & B. Montuelle, 2007. Lotic biofilm community structure and pesticide tolerance along a contamination gradient in a vineyard area. Aquatic Microbial Ecology 50: 91-102.
  413. Eulin, A.& R. LeCohu, 1998. Epilithic diatom communities during the colonization of artificial substrates in the River Garonne (France). Comparison with natural communities. Archiv für Hydrobiologie 143: 79-106.
  414. Ferreira da Silva, E., S. F. P. Almeida, M. L. Nunes, A. T. Luis, F. Borg, M. Hedlund, C. M. de Sa, C. Patinha & P. Teixeira, 2009. Heavy metal pollution downstream the abandoned Coval da Mo mine (Portugal) and associated effects on epilithic diatom communities. Science of the Total Environment 407: 5620-5636.
  415. Gold, C., A. Feurtet-Mazel, M. Coste & A. Boudou, 2003. Impacts of Cd and Zn on the development of periphytic diatom communities in artificial streams located along a river pollution gradient. Archives of Environmental Contamination and Toxicology 44: 189-197.
  416. Guasch, H., W. Admiraal, H. Blanck, N. Ivorra, V. Lehmann, M. Paulsson, M. Real & S. Sabater, 1999. Use of lotic periphyton communities as indicators of sensitivity to certain toxicants. Use of Algae for Monitoring Rivers 3: 245-252.
  417. Guasch, H., W. Admiraal & S. Sabater, 2003. Contrasting effects of organic and inorganic toxicants on freshwater periphyton. Aquatic toxicology 64: 165-175.
  418. Guasch, H., N. Ivorra, V. Lehmann, M. Paulsson, M. Real & S. Sabater, 1998a. Community composition and sensitivity of periphyton to atrazine in flowing waters: the role of environmental factors. Journal of Applied Phycology 10: 203-213.
  419. Guasch, H., N. Ivorra, V. Lehmann, M. Paulsson, M. Real & S. Sabater, 1998b. Community composition and sensitivity of periphyton to atrazine in flowing waters: the role of environmental factors. Journal of Applied Phycology 10: 203-213.
  420. Guasch, H., I. Munoz, N. Roses & S. Sabater, 1997. Changes in atrazine toxicity throught succession of stream periphyton communities. Journal of Applied Phycology 9: 137-146.
  421. Gustavson, K., F. Mohlenberg & L. Schluter, 2003. Effects of exposure duration of herbicides on natural stream periphyton communities and recovery. Archives of Environmental Contamination and Toxicology 45: 48-58.
  422. Hoagland, K. D., S. C. Roemer & J. R. Rosowski, 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). American Journal of Botany 69: 188-213.
  423. Kelly, M. G., S. Juggins, R. Guthrie, S. Pritchard, J. Jamieson, B. Rippey, H. Hirst & M. L. Yallop, 2007. Assessment of ecological status in UK rivers using diatoms. Freshwater Biology 1111: 1365-2427.
  424. Kociolek, J. P., 2005. Taxonomy and ecology: further considerations. Proceedings of the California Academy of Sciences 56: 99-106.
  425. Loos, R., B. M. Gawlik, G. Locoro, E. Rimaviciute, S. Contini & G. Bidoglio, 2009. EU-wide survey of polar organic persistent pollutants in European river waters. Environmental pollution 157: 561-568.
  426. Marcel, R., A. Bouchez & F. Rimet, 2011. Using diatom taxonomic diversity to assess pesticide contamination in rivers. Abstract book of the Symposium for European Freshwater Sciences, Girona, Spain.june 27-july 1, 2011, p. 130.
  427. Ministère de l'Agriculture et de la Pêche, 2008. Plan Ecophyto 2018 de réduction des usages de pesticides 2008-2018. (http://agriculture.gouv.fr/sections/magazine/focus/phyto-2018-plan- pour/#planECOPHYTO2018).
  428. Montuelle, B., U. Dorigo, A. Berard, B. Volat, A. Bouchez, A. Tlili, V. Gouy & S. Pesce, 2010. The periphyton as a multimetric bioindicator for assessing the impact of land use on rivers: an overview of the ArdiSres-Morcille experimental watershed (France). Hydrobiologia 657: 123-141.
  429. Morin, S., 2006. Bioindication des effets des pollutions métalliques sur les communautés de diatomées benthiques. Approches expérimentales et in situ. Thesis, Cemagref Bordeaux, Université de Bordeaux 1, 302 pp.
  430. Morin, S., S. Pesce, A. Tlili, M. Coste & B. Montuelle, 2009. Recovery potential of periphytic communities in a river impacted by a vineyard watershed. Ecological Indicators 10: 419-426.
  431. Navarro, E., H. Guasch & S. Sabater, 2002. Use of microbenthic algal communities in ecotoxicological tests for the assessment of water quality: the Ter river case study. Journal of Applied Phycology 14: 41-48.
  432. Onbasli, D. & B. Aslim, 2009. Effects of some organic pollutants on the exopolysaccharides (EPSs) produced by some Pseudomonas spp. strains. Journal of Hazardous Materials 168: 64-67.
  433. Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171-178.
  434. Peres, F., D. Florin, T. Grollier, A. FeurtetMazel, M. Coste, F. Ribeyre, M. Ricard & A. Boudou, 1996. Effects of the phenylurea herbicide isoproturon on periphytic diatom communities in freshwater indoor microcosms. Environmental pollution 94: 141-152.
  435. Pringle, C. M., 1990. Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algae. Ecology 71: 905-920.
  436. Rimet, F., J. C. Druart & O. Anneville, 2009. Exploring the dynamics of plankton diatom communities in Lake Geneva using emergent self-organizing maps (1974-2007). Ecological Informatics 4: 99-110.
  437. Rott, E., G. Hofmann, K. Pall, P. Pfister & E. Pipp, 1997. Indikationslisten für Aufwuchsalgen Teil 1: Saprobielle indikation. Bundesministerium für Land-und Forstwirtschaft, Wien, Austria: 1-73.
  438. Rumeau, A. & M. Coste, 1988. Initiation à la systematique des diatomées d'eau douce pour l'utilisation pratique d'un indice diatomique générique. Bulletin Français de Pêche et de Pisciculture 309: 1-69.
  439. Sabater, S., 2000. Diatom communities as indicators of environmental stress in the Guadiamar River, S-W. Spain, following a major mine tailings spill. Journal of Applied Phycology 12: 113-124.
  440. Salonen, V. P., N. Tuovinen & S. Valpola, 2006. History of mine drainage impact on Lake Orijaervi algal communities, SW Finland. Journal of Paleolimnology 35: 289-303.
  441. Schmitt-Jansen, M.& R. Altenburger, 2005. Toxic effects of isoproturon on periphyton communities - a microcosm study. Estuarine Coastal and Shelf Science 62: 539-545.
  442. Stevenson, R. J.& L. L. Bahls, 2002. Rapid bioassessment protocols for use in strams and wadeable rivers: perophyton, benthic macroinvertebrates and fish. 2nd edition. Periphyton protocols. In Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Tribling (eds), US EPA, 1-23.
  443. Tlili, A., U. Dorigo, B. Montuelle, C. Margoum, N. Carluer, V. Gouy, A. Bouchez & A. Berard, 2008. Responses of chronically contaminated biofilms to short pulses of diuron -An experimental study simulating flooding events in a small river. Aquatic toxicology 87: 252-263.
  444. Trobajo, R., E. Clavero, V. Chepurnov, K. Sabbe, D. G. Mann, S. Ishihara & E. J. Cox, 2009. Morphological, genetic and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae). Phycologia 48: 443-459.
  445. Volatier, L., 2004. Responses of a periphytic assemblage exposed to a complex effluent: bioassays and artificial channels. Thesis, National Institute of Applied Sciences of Lyon, France. 303 pp.
  446. Watanabe, T., K. Asai & A. Houki, 1986. Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage -Diatom assemblage index (DAIpo). The Science of the Total Environment 55: 209-218.
  447. Whitton, B. A. & M. G. Kelly, 1995. Use of Algae and Other Plants for Monitoring Rivers. Australian Journal of Ecology 20: 45-56.
  448. Wunsam, S., A. Cattaneo & N. Bourassa, 2002a. Comparing diatom species, genera and size in biomonitoring: a case study from streams in the Laurentians (Quebec, Canada). Freshwater Biology 47: 325-340.
  449. Wunsam, S., A. Cattaneo & N. Bourassa, 2002b. Comparing diatom species, genera and size in biomonitoring: a case study from streams in the Laurentians (Quebec, Canada). Freshwater Biology 47: 325-340.
  450. Allanson, B. R., 1973. The fine structure of the periphyton of Chara sp. and Potamogeton natans from Wytham Pond, Oxford, and its significance to the macrophyte-periphyton etabolic model of R. G. Wetzel and H. L. Allen. Freshwater Biol. 3, 535-542.
  451. Bérard, A., 1996. Effects of four organic solvents on natural phytoplankton assemblages: consequences for ecotoxicological experiments on herbicides. Bull. Environ. Contam. Toxicol. 57, 183-189.
  452. Bérard, A., Dorigo, U., Mercier, I., Becker-van Slooten, K., Grandjean, D., Leboulanger, C., 2003. Comparison of the ecotoxicological impact of the triazine Irgarol 1051 and atrazine on microalgal culture and natural microalgal communities in Lake Geneva. Chemosphere 53, 935-944.
  453. Berthon, V., Bouchez, A., Rimet, F., 2011. Use of diatom life-forms and ecological guilds to assess pollution in rivers: case study of south-eastern french rivers. Hydrobiologia, in press.
  454. Biggs, B.J.F., Goring, D.G., Nikora, V.I., 1998. Subsidy and stress response of stream periphyton to gradients in water velocity as a function of community growth form. J. Phycol. 34, 598-607.
  455. Biondini, M.E., Bonham, C.D., Redente, E.F., 1985. Secondary successional patterns in a sagebrush (Artemisia tridentata) community as they relate to soil disturbance and soil biological activity. Vegetatio 60, 25-36.
  456. Blanck, H., Wänkberg, S.A., Molander, S., 1988. Pollution-Induced Community Tolerance -A new ecotoxicological tool. In: Cairs, J., Pratt, J., Pratt, J.R. (Eds.), Functional testing of aquatic biota for estimating hazards of chemicals, pp. 219-230.
  457. Blinn, D., Fredericksen, A., Korte, V., 1980. Colonization rates and community structure of diatoms on three different rock substrata in a lotic system. Br. Phycol. J. 15, 303-310.
  458. Cattaneo, A., Asioli, A., Comoli, P., Manca, M., 1998. Organisms' response in a chronically polluted lake supports hypothesized link between stress and size. Limnol. Oceanogr. 43, 1938-1943.
  459. Cattaneo, A., Couillard, Y., Wunsam, S., Courcelles, M., 2004. Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). J. Paleolimnol. 32, 163-175.
  460. Cazaubon, A., 1988. Crue et communautés diatomiques (Moyenne-Durance, Provence). Cah. Biol. Mar. 29, 233-246.
  461. Cemagref, 1982. Etude des méthodes biologiques quantitative d'appréciation de la qualité des eaux. Rapport Q.E.Lyon-A.F.Bassin Rhône-Méditerranée-Corse., 218 pp.
  462. Descy, J.P., 1980. Utilisation des algues benthiques comme indicateurs biologiques de la qualité des eaux courantes. In : Pesson, P. (Ed.) La pollution des eaux continentales. Incidences sur les biocénoses aquatiques. Gauthier Villars, Paris. 2nd edition: pp. 169-194.
  463. Devito, J., Meik, J.M., Gerson, M.M., Formanowicz , D.R., 2004. Physiological tolerances of three sympatric riparian wolf spiders (Araneae: Lycosidae) correspond with microhabitat distributions. Can. J. Zool. 82, 1119-1125.
  464. Dorigo, U., Bourrain, X., Bérard, A., Leboulanger, C., 2004. Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. Sci. Total Environ. 318, 101- 114. Dorigo, U., Leboulanger, C., Bérard, A., Bouchez, A., Humbert, J. F., Montuelle, B., 2007. Lotic biofilm community structure and pesticide tolerance along a contamination gradient in a vineyard area. Aquat. Microb. Ecol. 50, 91-102.
  465. Dorigo, U., Lefranc, M., Leboulanger, C., Montuelle, B., Humbert, JF., 2009. Influence of sampling strategy on the assessment of the impact of pesticides on periphytic microbial communities in a small river. FEMS Microbial Ecology, 67, 491-501.
  466. Duong, T.T., Morin, S., Herlory, O., Feurtet-Mazel, A., Coste, M., Boudou, A., 2008. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquat. Tox., 90, 19- 28. Eulin, A., LeCohu, R., 1998. Epilithic diatom communities during the colonization of artificial substrates in the River Garonne (France). Comparison with natural communities. Arch. Hydrobiol. 143, 79-106.
  467. European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities 327, 1-72.
  468. Evans, K.M., Wortley, A.H., Simpson, G.E., Chepurnov, V.A., Mann, D.G., 2008. A molecular systematic approach to explore diversity within the Sellaphora pupula species complex (bacillariophyta). J. Phycol. 44, 215-231.
  469. Ferreira da Silva, E., Almeida, S. F. P., Nunes, M. L., Luis, A.T., Borg, F., Hedlund, M., Marques de Sa, C., Patinha, C., Teixeira, P., 2009. Heavy metal pollution downstream the abandoned Coval da Mo mine (Portugal) and associated effects on epilithic diatom communities. Sci. Total Environ. 407, 5620- 5636.
  470. Ferreira, S., Seeliger, U., 1985. The colonization process of algal epiphytes on Ruppia maritima L. Bot. Mar. 28, 245-249.
  471. Germain, H., 1981. Flore des diatomées, eaux douces et saumâtres. Ed. Boubée, Paris, 444 pp. Gold, C., Feurtet-Mazel, A., Coste, M., Boudou, A., 2003a. Effects of cadmium stress on periphytic diatom communities in indoor artificial streams. Freshwater Biol. 48, 316-328.
  472. Gold, C., Feurtet-Mazel, A., Coste, M., and Boudou, A. 2003b Impacts of Cd and Zn on the Development of Periphytic Diatom Communities in Artificial Streams Located Along a River Pollution Gradient. Arch. Environ. Contam. Toxicol. 44, 189-197.
  473. Gold, C., Feurtet-Mazel, A., Coste, M., and Boudou, A. 2003c Structural perturbations induced by cadmium on periphytic diatom communities within indoor artificial streams. Freshwater Biol. 48, 1- 13. Guasch, H., Admiraal, W., Blanck, H., Ivorra, N., Lehmann, V., Paulsson, M., Real, M., Sabater, S., 1999 Use of lotic periphyton communities as indicators of sensitivity to certain toxicants. Use of Algae for Monitoring Rivers 3, 245-252.
  474. Guasch, H., Ivorra, N., Lehmann, V., Paulsson, M., Real, M., Sabater, S. 1998a Community composition and sensitivity of periphyton to atrazine in flowing waters: the role of environmental factors. J. Appl. Phycol. 10, 203-213.
  475. Guasch, H., Ivorra, N., Lehmann, V., Paulsson, M., Real, M., Sabater, S., 1998b. Community composition and sensitivity of periphyton to atrazine in flowing waters: the role of environmental factors. J. Appl. Phycol. 10, 203-213.
  476. Guasch, H., Munoz, I., Roses, N., Sabater, S., 1997. Changes in atrazine toxicity throught succession of stream periphyton communities. J. Appl. Phycol. 9, 137-146.
  477. Guasch, H., Navarro, E., Serra, A., Sabater, S., 2004. Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwater Biol. 49, 463-473.
  478. Guasch, H., Sabater, S., 1998. Light history influences the sensitivity to atrazine in periphytic algae. J. Phycol. 34, 233-241.
  479. Gustavson, K., Mohlenberg, F., Schluter, L., 2003. Effects of exposure duration of herbicides on natural stream periphyton communities and recovery. Arch. Environ. Con. Tox. 45, 48-58.
  480. Hoagland, K.D., 1981. Diatom colonization, community structure and succession on artificial substrate in freshwater. Thesis, University of Nebraska, Lincoln, USA. 115 pp.
  481. Hoagland, K. D., Roemer, S. C., Rosowski, J. R., 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). Am. J. Bot. 69, 188-213.
  482. Joux-Arab, L., Berthet, B., Robert, J. M., 2000. Do toxicity and accumulation of copper change during size reduction in the marine pennate diatom Haslea ostrearia? Mar. Biol. 136, 323-330.
  483. Katoh, K., 1992. Correlation between cell density and dominant growth form of epilithic diatom assemblages. Diatom Res. 7, 77-86.
  484. Kelly, M. G., Juggins, S., Guthrie, R., Pritchard, S., Jamieson, J., Rippey, B., Hirst, H. Yallop, M.L., 2007. Assessment of ecological status in UK rivers using diatoms. Freshwater Biol. 1111, 1365-2427.
  485. Krammer, K., 2000. The genus Pinnularia. Gantner Verlag, Ruggell, Germany, 703 pp.
  486. Krammer, K., 2001. Navicula sensu stricto, 10 Genera Separated from Navicula sensu stricto, Frustulia. Gantner Verlag, Ruggell, Germany, 526 pp.
  487. Krammer, K., 2002. Cymbella. Gantner Verlag, Ruggell, Germany, 584 pp.
  488. Krammer, K., 2003. Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. Gantner Verlag, Ruggell, Germany, 530 pp.
  489. Krammer, K., Lange-Bertalot, H., 1986. Bacillariophyceae 1. Teil: Naviculaceae. 876 pp.
  490. Krammer, K., Lange-Bertalot, H., 1988. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. 596 pp.
  491. Krammer, K., Lange-Bertalot, H., 1991a. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. 576 pp.
  492. Krammer, K., Lange-Bertalot, H., 1991b. Bacillariophyceae 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gesamtliteraturverzeichnis Teil 14. 437 pp.
  493. Lange-Bertalot, H., 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64, 285-304.
  494. Leclercq, L., Maquet, B., 1987. Deux nouveaux indices diatomiques et de qualité chimique des eaux courantes. Comparaison avec différents indices existants. Cah. Biol. Mar. 28, 303-310.
  495. Leira, M., Sabater, S., 2005. Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Wat. Res. 39, 73-82.
  496. Mann, D. G., 1999. The species concept in diatoms. Phycologia 38, 437-495.
  497. Mann, D. G., Droop, S. J. M., 1996. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336, 19-32.
  498. Mann, D. G., McDonald, S. M., Bayer, M. M., Droop, S.J.M., Chepurnov, V., Loke, R.E., Ciobanu, A., du Buf, J.M.H., 2004. The Sellaphora pupula species complex (Bacillariophyceae): morphometric analysis, ultrastructure and mating data provide evidence for five new species. Phycologia 43, 459- 482. McCune, B., Mefford, J., 2006. PC-ORD. Multivariate Analysis of Ecological Data. Version 5.18. MjM Software, Gleneden Beach, Oregon, U.S.A. Ministère de l'Agriculture et de la Pêche, 2008. Plan Ecophyto 2018 de réduction des usages de pesticides 2008-2018. (http://agriculture.gouv.fr/sections/magazine/focus/phyto-2018-plan- pour/#planECOPHYTO2018)
  499. Ministère de la Santé et des Solidarités, 2005. Les pesticides dans l'eau potable (http://www.sante.gouv.fr/htm/dossiers/eaux\_alimentation/eaux\_pesticides.pdf).
  500. Morin, S., 2006. Bioindication des effets des pollution métalliques sur les communautés de diatomées benthiques. Approches expérimentales et in situ. Thesis, Cemagref Bordeaux, Université de Bordeaux 1, 302 pp.
  501. Morin, S., Bottin, M., Mazella, N., Macary, F., Delmas, F., Winterton, P., Coste, M., 2009a. Linking diatom community structure to pesticide input as evaluated through a spatial contamination potential (Phytopixal): A case study in the Neste river system (South-West France). Aquat. Toxicol. 94, 28-39.
  502. Morin, S., Pesce, S., Tlili, A., Coste, M., Montuelle, B., 2009b. Recovery potential of periphytic communities in a river impacted by a vineyard watershed. Ecol. Indicators 10, 419-426.
  503. Morin, S., Vivas-Nogues, M., Duong, T. T., Boudou, A., Coste, M., Delmas, F., 2007. Dynamics of benthic diatom colonization in a cadmium/zinc-polluted river (Riou-Mort, France). Arch. Hydrobiol. 168, 179-197.
  504. Montuelle, B., Dorigo, U., Bérard, A., Volat, B., Bouchez, A., Tlili, A., Gouy, V., Pesce, S., 2010. The periphyton as a multimetric bioindicator for assessing the impact of land use on rivers: an overview of the Ardie`res-Morcille experimental watershed (France). Hydrobiologia, DOI 10.1007/s10750-010- 0105-2
  505. Navarro, E., Guasch, H., Sabater, S., 2002. Use of microbenthic algal communities in ecotoxicological tests for the assessment of water quality: the Ter river case study. J. Appl. Phycol. 14, 41-48.
  506. Onbasli, D., Aslim, B., 2009. Effects of some organic pollutants on the exopolysaccharides (EPSs) produced by some Pseudomonas spp. strains. J. Hazard. Mater. 168, 64-67.
  507. Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquat. Bot. 86, 171-178.
  508. Passy, S. I., 2007. Community analysis in stream biomonitoring: What we measure and what we don't. Environ. Monit. Assess. 127, 409-417.
  509. Peres, F., Florin, D., Grollier, T., FeurtetMazel, A., Coste, M., Ribeyre, F., Boudou, A., 1996. Effects of the phenylurea herbicide isoproturon on periphytic diatom communities in freshwater indoor microcosms. Environ. Pollut. 94, 141-152.
  510. Pesce, S., Fajon, C., Bardot, C., Bonnemoy, F., Portelli, C., Bohatier, J., 2006. Effects of the phenylurea herbicide diuron on natural riverine microbial communities in an experimental study. Aquat. Toxicol. 78, 303-314.
  511. Pringle, C. M. 1990 Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algae. Ecology 71, 905-920.
  512. Prygiel, J., Coste, M., 1998. Mise au point de l'Indice Biologique Diatomée, un indices diatomique pratique applicable au réseau hydrographique francais. L'eau, l'industrie, les nuisances 211, 40-45.
  513. Rimet, F., Cauchie, H. M., Hoffmann, L., Ector, L., 2005. Response of diatom indices to simulated water quality improvements in a river. J. Appl. Phycol. 17, 119-128.
  514. Rimet, F., Druart, J. C., Anneville, O., 2009a. Exploring the dynamics of plankton diatom communities in Lake Geneva using emergent self-organizing maps (1974-2007). Ecol. Inform. 4, 99-110.
  515. Rimet, F., Ector, L., Cauchie, H. M., Hoffmann, L., 2009b. Changes in diatom-dominated biofilms during simulated improvements in water quality: implications for diatom-based monitoring in rivers. Eur. J. Phycol. 44, 567-577.
  516. Robinson, C. T., Rushforth, S. R., 1987. Effects of Physical Disturbance and Canopy Cover on Attached Diatom Community Structure in an Idaho Stream. Hydrobiologia 154, 49-59.
  517. Rott, E., Hofmann, G., Pall, K., Pfister, P., Pipp, E., 1997. Indikationslisten für Aufwuchsalgen Teil 1: Saprobielle indikation. Report, Wien, Austria, Bundesministerium für Land-und Forstwirtschaft. 73 pp. Rumeau, A., Coste, M., 1988. Initiation à la systematique des diatomées d'eau douce pour l'utilisation pratique d'un indice diatomique générique. Bull. Fr. Peche Piscic. 309, 1-69.
  518. Sabater, S., 2000. Diatom communities as indicators of environmental stress in the Guadiamar River, S-W. Spain, following a major mine tailings spill. J. Appl. Phycol. 12, 113-124.
  519. Sabater, S., Navarro, E., and Guasch, H., 2002. Effects of copper on algal communities at different current velocities. J. Appl. Phycol. 14, 391-398.
  520. Salonen, V. P., Tuovinen, N., Valpola, S., 2006. History of mine drainage impact on Lake Orijaervi algal communities, SW Finland. J. Paleolimnol. 35, 289-303.
  521. Schmitt-Jansen, M., Altenburger, R., 2005. Toxic effects of isoproturon on periphyton communities - a microcosm study. Estuar. Coast. Shelf S. 62, 539-545.
  522. Stevenson, R. J., Bahls, L. L., 2002. Rapid bioassessment protocols for use in strams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. 2nd edition. Periphyton protocols. In: Barbour, M. T., Gerritsen, J., Snyder, B. D., Tribling, J. B. (Eds.) US EPA.
  523. Stewart, P. S., Costerton, J. W., 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358, 135- 138. Tlili, A., Dorigo, U., Montuelle, B., Margoum, C., Carluer, N, Gouy, V., Bouchez, A., Bérard, A., 2008. Responses of chronically contaminated biofilms to short pulses of diuron -An experimental study simulating flooding events in a small river. Aquat. Toxicol. 87, 252-263.
  524. Van Dam, H., Mertens, A., 1990. A comparison of recent epilithic diatom assemblages from the industrially acidified and copper polluted lake Orta (Northern Italy) with old literature data. Diatom Res. 5, 1-13.
  525. Villeneuve, A., 2008. Effets conjoints de facteurs physiques (lumière et vitesse de courant) et chimiques (pesticides) sur la structure et la composition du périphyton : une approche mutli-échelle. phD Thesis, Université de Savoie, Chambéry, France, 223 pp.
  526. Villeneuve, A., Montuelle, B., Bouchez, A., 2010. Influence of slight differences in environmental conditions (light, hydrodynamics) on the structure and function of periphyton. Aquatic Sciences,72, 33-44.
  527. Volatier, L., 2004. Responses of a periphytic assemblage exposed to a complex effluent: bioassays and artificial channels. PhD Thesis, National Institute of Applied Sciences of Lyon, France, 303 pp.
  528. Watanabe, T., Asai, K., Houki, A. ,1986. Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage -Diatom assemblage index (DAIpo). Sci. Total Environ. 55, 209- 218. Whitton, B. A., Kelly, M. G., 1995. Use of Algae and Other Plants for Monitoring Rivers. Aust. J. Ecol. 20, 45-56.
  529. Zelinka, M., Marvan, P., 1961 Zur Prazisierung der biologischen Klassifikation der Reinheit fliessender Gewasser. Arch. Hydrobiol. 57, 389-407. c. References
  530. Beijerinck, M. W., 1913. De infusies en de ontdekking der bakterien. Jaarboek vande Koninklijke Akademie van Wetenschappen 1-28.
  531. Bouchez, A., F. Rimet, R. Marcel, T. Caquet, M. Roucaute & C. Geret, 2012. Des bioindicateurs pour évaluer l'impact ou la restauration vis-à-vis des pesticides. Rapport INRA Thonon, ONEMA, France. 131 pp. Bruder, K. & L. K. Medlin, 2008. Morphological and Molecular Investigations of Naviculoid Diatoms. II. Selected Genera and Families. Diatom Research 23: 283-329.
  532. Buchwalter, D. B., D. J. Cain, C. A. Martin, L. Xie, S. N. Luoma & T. Garland, 2008. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility. Proceedings of the National Academy of Sciences of the United States of America 105: 8321-8326.
  533. Carew, M. E., A. D. Miller & A. A. Hoffmann, 2011. Phylogenetic signals and ecotoxicological responses: potential implications for aquatic biomonitoring. Ecotoxicology 20: 595-606.
  534. Casteleyn, G., F. Leliaert, T. Backeljau, A. E. Debeer, Y. Kotaki, L. Rhodes, N. Lundholm, K. Sabbe & W. Vyverman, 2010. Limits to gene flow in a cosmopolitan marine planktonic diatom. Proceedings of the National Academy of Sciences of the United States of America 107: 12952-12957.
  535. Cavender-Bares, J., K. H. Kozak, P. V. A. Fine & S. W. Kembel, 2009. The merging of community ecology and phylogenetic biology. Ecology letters 12: 693-715.
  536. Coste, M., S. Boutry, J. Tison-Rosebery & F. Delmas, 2009. Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006). Ecological Indicators 9: 621- 650. Dell'Uomo, A., 2004. L'indice diatomico di eutrofizzazione/polluzione (EPI-D) nel monitoraggio delle acque correnti -linee guida. Agenzia Regional per la Protezione dell'Aambiente e per i servizi Tecnici ; Agenzia Proviciale dell'Ambiente e per i servizi Tecnici, Italy. 101 pp.
  537. Dorigo, U., X. Bourrain, A. Bérard & C. Leboulanger, 2004. Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. The Science of the Total Environment: 101-114.
  538. Ector, L.& F. Rimet, 2005. Using bioindicators to assess rivers in Europe: An overview. In Lek, S., M. Scardi, P. Verdonschot, J. P. Descy & Y. S. Park (eds), Modelling community structure in aquatic ecosystems. Springer Verlag, 7-19.
  539. Finlay, B. J., E. B. Monaghan & S. C. Maberly, 2002. Hypothesis: The rate and scale of dispersal of freshwater diatom species is a function of their global abundance. Protist 153: 261-273.
  540. Grenier, M., S. Campeau, I. Lavoie, Y. S. Park & S. Lek, 2006. Diatom reference communities in Quebec (Canada) streams based on Kohonen self-organizing maps and multivariate analyses. Canadian Journal of Fisheries and Aquatic Sciences 63: 2087-2106.
  541. Guasch, H., W. Admiraal & S. Sabater, 2003. Contrasting effects of organic and inorganic toxicants on freshwater periphyton. Aquatic toxicology 64: 165-175.
  542. Guasch, H., N. Ivorra, V. Lehmann, M. Paulsson, M. Real & S. Sabater, 1998. Community composition and sensitivity of periphyton to atrazine in flowing waters: the role of environmental factors. Journal of Applied Phycology 10: 203-213.
  543. Hebert, P., A. Cywinska, S. L. Ball & J. R. deWaard, 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B-Biological Sciences 270: 313-321.
  544. Houk, V., R. Klee & H. Tanaka, 2010. Atlas of freshwater centric diatoms with brief key and descriptions. Part III. Stephanodiscaceae A. Cyclotella, Tertiarius, Discotella. Fottea 10: 1-498.
  545. Jones, F. C., 2008. Taxonomic sufficiency: The influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environmental Reviews 16: 45-69.
  546. Julius, M. L. & E. C. Theriot, 2010. The Diatoms: a primer. In Smol, J. P. & E. F. Stoermer (eds), The diatoms: applications for the environemental and earth sciences, 2nd edition. 8-22.
  547. Kelly, M. G.& B. A. Whitton, 1995. The Trophic Diatom Index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433-444.
  548. Kermarrec, L., 2012. Apport des outils de la biologie moléculaire pour l'utilisation des diatomées comme bioindicateurs de la qualité des écosystèmes aquatiques lotiques et pour l'étude de leur taxonomie. Thesis, INRA Thonon, Université de Grenoble, France, 297 pp.
  549. Kingston, J., 2003. Araphid and monoraphid diatoms. In Wehr, J. D. & R. G. Sheath (eds), Freshwater algae of North America: Classification and Ecology. San Diego, USA: 595-636.
  550. Kociolek, J. P.& E. C. Ruck, 2004. Preliminary phylogeny of the family Surirellaceae (Bacillariophyta). Bibliotheca Diatomologica 50: 1-236.
  551. Kociolek, J. P.& E. F. Stoermer, 2001. Taxonomy and ecology: A marriage of necessity. Diatom Research 16: 433-442.
  552. Krammer, K., 2002. Cymbella. Gantner Verlag, Ruggell, Germany. 584 pp.
  553. Lavoie, I., S. Campeau, M. Grenier & P. J. Dillon, 2006. A diatom-based index for the biological assessment of eastern Canadian rivers: an application of correspondence analysis (CA). Canadian Journal of Fisheries and Aquatic Sciences 63: 1793-1811.
  554. Leira, M. & S. Sabater, 2005. Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Research: 73-82.
  555. Pan, Y., R. J. Stevenson, B. H. Hill & A. T. Herlihy, 2000. Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of the North American Benthological Society: 518-540.
  556. Rimet, F., 2012. Recent view on river pollution and diatoms. Hydrobiologia 683: 1-24.
  557. Rimet, F., A. Couté, A. Piuz, V. Berthon & J. C. Druart, 2010. Achnanthidium druartii sp. nov. (Achnanthales, Bacillariophyta): A new species invading European rivers. Vie Milieu 60: 185-195.
  558. Rimet, F., L. Ector, H. M. Cauchie & L. Hoffmann, 2004. Regional distribution of diatom assemblages in the headwater streams of Luxembourg. Hydrobiologia 520: 105-117.
  559. Rott, E., E. Pipp, P. Pfister, H. Van Dam, K. Ortler, N. Binder & K. Pall, 1998. Indikationslisten für aufwuchsalgen in Österrichischen fliessgewässern. Teil 2: Trophieindikation. Arbeitsgruppe Hydrobotanik, Institut für Botanik, Universität Innsbruck, Austria: 1-248.
  560. Soininen, J., 2004. Determinants of benthic diatom community structure in Boreal streams: the role of environmental and spatial factors at different scales. International Review of Hydrobiology: 139- 150.
  561. Theriot, E. C., S. C. Fritz, C. Whitlock & D. J. Conley, 2006. Late Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. Paleobiology 32: 38-54.
  562. Theriot, E. C., E. Ruck, M. Ashworth, T. Nakov & R. K. Jansen, 2011. Status of the Pursuit of the Diatom Phylogeny: Are Traditional Views and New Molecular Paradigms Really that Different? In Seckbach, J. & J. P. Kociolek (eds), The Diatom World. Springer Science+Business Media B.V., The Diatom World, 119-142.
  563. Tornes, E., J. Cambra, J. Goma, M. Leira, R. Ortiz & S. Sabater, 2007. Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. Annales de Limnologie-International Journal of Limnology 43: 1-11.
  564. Torrisi, M., S. Scuri, A. Dell'Uomo & M. Cocchioni, 2010. Comparative monitoring by means of diatoms, macroinvertebrates and chemical parameters of an Apennine watercourse of central Italy: The river Tenna. Ecological Indicators 10: 910-913.
  565. Trobajo, R., E. Clavero, V. Chepurnov, K. Sabbe, D. G. Mann, S. Ishihara & E. J. Cox, 2009. Morphological, genetic and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae). Phycologia 48: 443-459.
  566. Van De Vijver, B. & L. Beyens, 1999. Biogeography and ecology of freshwater diatoms in Subantarctica: a review. Journal of Biogeography: 993-1000.
  567. Vanelslander, B., V. Creach, P. Vanormelingen, A. Ernst, V. A. Chepurnov, E. Sahan, G. Muyzer, L. J. Stal, W. Vyverman & K. Sabbe, 2009. Ecological Differentiation Between Sympatric Pseudocryptic Species in the Estuarine Benthic Diatom Navicula phyllepta (Bacillariophyceae). Journal of Phycology 45: 1278-1289.
  568. Vyverman, W., E. Verleyen, K. Sabbe, K. Vanhoutte, M. Sterken, D. A. Hodgson, D. G. Mann, S. Juggins, B. V. De Vijver, V. Jones, R. Flower, D. Roberts, V. A. Chepurnov, C. Kilroy, P. Vanormelingen & A. De Wever, 2007. Historical processes constrain patterns in global diatom diversity. Ecology 88: 1924-1931.
  569. Wiens, J. J., 2004. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58: 193-197.
  570. Wiens, J. J., D. D. Ackerly, A. P. Allen, B. L. Anacker, L. B. Buckley, H. V. Cornell, E. I. Damschen, T. J. Davies, J. A. Grytnes, S. P. Harrison, B. A. Hawkins, R. D. Holt, C. M. Mccain & P. R. Stephens, 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecology letters 13: 1310-1324.
  571. Parlibellus F. E. Round, R. M. Crawford, and D. G. Mann. The diatoms. Biology, morphology of the genera., 1990. 747 pages.
  572. Pinnularia K. Krammer and H. Lange-Bertalot. Bacillariophyceae 1. Teil: Naviculaceae. 1986. 876 pages.
  573. K. Krammer. The genus Pinnularia, Ruggell, Germany:Gantner Verlag, 2000. 703 pages.
  574. Placoneis F. E. Round, R. M. Crawford, and D. G. Mann. The diatoms. Biology, morphology of the genera., 1990. 747 pages.