Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage (original) (raw)
Related papers
Biochimica et Biophysica Acta (BBA) - General Subjects, 2014
Background: Articular cartilage defects are a veritable therapeutic problem because therapeutic options are very scarce. Due to the poor self-regeneration capacity of cartilage, minor cartilage defects often lead to osteoarthritis. Several surgical strategies have been developed to repair damaged cartilage. Autologous chondrocyte implantation (ACI) gives encouraging results, but this cell-based therapy involves a step of chondrocyte expansion in a monolayer, which results in the loss in the differentiated phenotype. Thus, despite improvement in the quality of life for patients, reconstructed cartilage is in fact fibrocartilage. Successful ACI, according to the particular physiology of chondrocytes in vitro, requires active and phenotypically stabilized chondrocytes. Scope of review: This review describes the unique physiology of cartilage, with the factors involved in its formation, stabilization and degradation. Then, we focus on some of the most recent advances in cell therapy and tissue engineering that open up interesting perspectives for maintaining or obtaining the chondrogenic character of cells in order to treat cartilage lesions. Major conclusions: Current research involves the use of chondrocytes or progenitor stem cells, associated with "smart" biomaterials and growth factors. Other influential factors, such as cell sources, oxygen pressure and mechanical strain are considered, as are recent developments in gene therapy to control the chondrocyte differentiation/dedifferentiation process. General significance: This review provides new information on the mechanisms regulating the state of differentiation of chondrocytes and the chondrogenesis of mesenchymal stem cells that will lead to the development of new restorative cell therapy approaches in humans. This article is part of a Special Issue entitled Matrixmediated cell behavior and properties.
2021
Cell-based therapy for articular hyaline cartilage regeneration predominantly involves the use of mesenchymal stem cells and chondrocytes. However, the regenerated repair tissue is suboptimal due to the formation of mixed hyaline and fibrocartilage, resulting in inferior long-term functional outcomes. Current preclinical research points towards the potential use of cartilage-derived chondroprogenitors as a viable option for cartilage healing. Fibronectin adhesion assay-derived chondroprogenitors (FAA-CP) and migratory chondroprogenitors (MCP) exhibit features suitable for neocartilage formation but are isolated using distinct protocols. In order to assess superiority between the two cell groups, this study was the first attempt to compare human FAA-CPs with MCPs in normoxic and hypoxic culture conditions, investigating their growth characteristics, surface marker profile and trilineage potency. Their chondrogenic potential was assessed using mRNA expression for markers of chondrogenesis and hypertrophy, glycosaminoglycan content (GAG), and histological staining. MCPs displayed lower levels of hypertrophy markers (RUNX2 and COL1A1), with normoxia-MCP exhibiting significantly higher levels of chondrogenic markers (Aggrecan and COL2A1/COL1A1 ratio), thus showing superior potential towards cartilage repair. Upon chondrogenic induction, normoxia-MCPs also showed significantly higher levels of GAG/DNA with stronger staining. Focused research using MCPs is required as they can be suitable contenders for the generation of hyaline-like repair tissue. Articular cartilage, a specialized tissue, plays a vital role in ensuring frictionless movement between the articulating bone surfaces 1. Cartilage loss following trauma, disease, or age-related wear and tear often progress to arthritis, eventually necessitating joint replacement. Current pharmacological and surgical therapies enable attenuation of symptoms but fail to provide a long-standing solution towards the restoration of hyaline articular cartilage. In recent years, cartilage repair using cellular therapeutics for regeneration of hyaline-like cartilage tissue has gained prominence. The commonly employed cells are autologous chondrocytes and mesenchymal stem cells (MSCs) 2. Even though various reports show their therapeutic efficacy, the major limitation is that the
Tissue Engineering, 2005
Autologous chondrocyte implantation is currently applied in clinics as an innovative tool for articular cartilage repair. Animal models have been and still are being used to validate and further improve the technique. However, in various species, the outcome varies from hyaline-like cartilage to fibrocartilage. This may be due partly to the spontaneous dedifferentiation of chondrocytes once cultured in vitro. Here we assessed whether the extent of dedifferentiation varies between species and we hypothesized that the level of chondrocyte phenotype stability during expansion may contribute to the maintenance of their chondrogenic commitment and redifferentiation potential. Condyle chondrocytes were harvested from sheep, dog, and human, and expanded for 1, 6, or 12 cell duplications. At each interval, cell phenotype was monitored (morphology and biosynthesis of cartilage markers) and redifferentiation was assessed by an in vitro assay of chondrogenesis in micromass pellet and an in vivo assay of ectopic cartilage formation in immunodeficient mice. Results indicate that, during culture, the sheep chondrocyte phenotype is maintained better than that of human chondrocytes, which in turn dedifferentiate to a lesser extent than dog chondrocytes Accordingly, after expansion, sheep chondrocytes spontaneously reform hyaline-like cartilage; human chondrocytes redifferentiate only under stimulation with chondrogenic inducers whereas, after a few passages, dog chondrocytes lose any capacity to redifferentiate regardless of the presence of inducers. Thus, conditions allowing cartilage formation in one species are not necessarily transposable to other species. Therefore, results with animal models should be cautiously applied to humans. In addition, for tissue-engineering purposes, the number of cell duplications must be, for each species, carefully monitored to remain in the range of amplification allowing redifferentiation and chondrogenesis.
Current Clinical Therapies for Cartilage Repair, their Limitation and the Role of Stem Cells
Current Stem Cell Research & Therapy, 2012
The management of osteochondral defects of articular cartilage, whether from trauma or degenerative disease, continues to be a significant challenge for Orthopaedic surgeons. Current treatment options such as abrasion arthroplasty procedures, osteochondral transplantation and autologous chondrocyte implantation fail to produce repair tissue exhibiting the same mechanical and functional properties of native articular cartilage. This results in repair tissue that inevitably fails as it is unable to deal with the mechanical demands of articular cartilage, and does not prevent further degeneration of the native cartilage. Mesenchymal stem cells have been proposed as a potential source of cells for cell-based cartilage repair due to their ability to self-renew and undergo multi-lineage differentiation. This proposed procedure has the advantage of not requiring harvesting of cells from the joint surface, and its associated donor site morbidity, as well as having multiple possible adult donor tissues such as bone marrow, adipose tissue and synovium. Mesenchymal stem cells have multi-lineage potential, but can be stimulated to undergo chondrogenesis in the appropriate culture medium. As the majority of work with mesenchymal stem cell-derived articular cartilage repair has been carried out in vitro and in animal studies, more work still has to be done before this technique can be used for clinical purposes. This includes realizing the ideal method of harvesting mesenchymal stem cells, the culture medium to stimulate proliferation and differentiation, appropriate choice of scaffold incorporating growth factors directly or with gene therapy and integration of repair tissue with native tissue.
Tissue Engineering, 2005
Autologous chondrocyte implantation is currently applied in clinics as an innovative tool for articular cartilage repair. Animal models have been and still are being used to validate and further improve the technique. However, in various species, the outcome varies from hyaline-like cartilage to fibrocartilage. This may be due partly to the spontaneous dedifferentiation of chondrocytes once cultured in vitro. Here we assessed whether the extent of dedifferentiation varies between species and we hypothesized that the level of chondrocyte phenotype stability during expansion may contribute to the maintenance of their chondrogenic commitment and redifferentiation potential. Condyle chondrocytes were harvested from sheep, dog, and human, and expanded for 1, 6, or 12 cell duplications. At each interval, cell phenotype was monitored (morphology and biosynthesis of cartilage markers) and redifferentiation was assessed by an in vitro assay of chondrogenesis in micromass pellet and an in vivo assay of ectopic cartilage formation in immunodeficient mice. Results indicate that, during culture, the sheep chondrocyte phenotype is maintained better than that of human chondrocytes, which in turn dedifferentiate to a lesser extent than dog chondrocytes Accordingly, after expansion, sheep chondrocytes spontaneously reform hyaline-like cartilage; human chondrocytes redifferentiate only under stimulation with chondrogenic inducers whereas, after a few passages, dog chondrocytes lose any capacity to redifferentiate regardless of the presence of inducers. Thus, conditions allowing cartilage formation in one species are not necessarily transposable to other species. Therefore, results with animal models should be cautiously applied to humans. In addition, for tissue-engineering purposes, the number of cell duplications must be, for each species, carefully monitored to remain in the range of amplification allowing redifferentiation and chondrogenesis.
Human stem cells and articular cartilage regeneration
Cells, 2012
The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem ...
Integrative Repair of Cartilage with Articular and Nonarticular Chondrocytes
Tissue Engineering, 2004
C ARTILAGE IS AN AVASCULAR TISSUE that receives nutrients through diffusion from its surrounding environment. When injured, this inherent property limits the local inflammatory response, resulting in regenerative tissue with different biochemical composition and inferior biomechanical properties compared with native cartilage. 1,2 This is especially true in articulating joints, where the consequence for the patient is often pain and loss of normal function. A number of techniques have been developed for reconstruction of cartilage defects, all of which utilize either autologous tissue transplantation or biocompatible, synthetic implants in an attempt to restore form