The autosegmental analysis of reduced vowel harmony systems: the case of Tunen (original) (raw)

Vowel harmony, neutral vowels and autosegmental theory

Lingua, 1986

A revision of McCarthy's analysis of Montaiies vowel harmony is proposed in which autosegmental tiers constitute a separate dimension of the representation whose feature specifications can be given independently. Segments which do not undergo harmony (including neutral vowels) are specified on the segmental tier and are not affected when a word is associated to the autosegmental tier (cf. Booij ). By allowing rules to make reference to the specification of a whole tier within a harmony domain it is possible to simplify McCarthy's treatment considerably, in particular dispensing with his 'delinking' rule and consequently his 'Duke of York' analysis. It is also not necessary to invoke extrinsic rule ordering. * I am grateful to the participants of one of the London Phonology Seminars held at the School of Oriental and African Studies, London University, for their comments on an earlier version of this paper, and in particular to Dick Hayward and Al Mtenje. Thanks are also due to Lingua's editors for suggestions for improving the exposition. Address for all correspondance:

Computing Long-Distance Dependencies in Vowel Harmony

This article develops an explicit procedural model of vowel harmony, and takes steps toward finding a lower bound on the computational power of phonological rules. The focus on formalization and procedural computation allows for simplification in models of representation and the discovery of interesting interactions involving the conditions in rules. It is shown that locality principles are derivable, which motivates the elimination of iterative rule application advocated here. Along the way, a novel analysis of neutral vowels in harmony processes is also provided.

A Non-cumulative Pattern in Vowel Harmony: a Frequency-Based Account

Proceedings of the Annual Meetings on Phonology, 2016

Variation in Hungarian front/back suffix harmony is conditioned by the number and height of the neutral vowels intervening between the last back vowel of the stem and the harmonising suffix (the “Count Effect” and the “Height Effect,” respectively). This paper examines whether the Height Effect applies cumulatively in an environment where the Count Effect also applies. We find that the unexpected non-cumulative behaviour in an environment can be explained in an analogical model that crucially refers to the frequency of forms and present a quantified model that predicts the measured harmonic behaviour on the basis of the harmonic behaviour, the similarity and the frequency of the analogically related stem classes.

Qualitative and Quantitative Aspects of Vowel Harmony: A Dynamics Model

2000

A fundamental problem in spoken language is the duality between the continuous aspects of phonetic performance and the discrete aspects of phonological competence. We study a specific instance of this problem in Hungarian vowel harmony. We present a model where continuous phonetic distinctions uncovered by our experiments are linked to the discreteness of phonological form using the mathematics of nonlinear dynamics.

Formal and cognitive restrictions on vowel harmony

2009

Vowel harmony, a phonological process whereby adjacent vowels share values of a phonological feature, has raised important challenges for generative phonology, particularly Optimality Theory (OT)(Prince and Smolensky, 1993/2004), a theory of linguistic typology in which output forms are computed in parallel from an infinite candidate set.

Arguments for an autosegmental analysis of Chichewa vowel harmony

Lingua, 1985

In this paper I argue on the basis of data from Chichewa that even if both linear and non-linear analyses to vowel harmony were to be available to linguistic theory, both of which probably describe the linguistic data adequately, theory evaluation criteria like economy, generality and learnability support the selection of the nonlinear alternative. I demonstrate that by allowing a rich system of principles, conditions and conventions most of which are attributed to universal grammar, the theory of non-linear phonology makes it possible for individual grammars like that of Chiehewa to be simpler. Consequently, most of the facts of Chichewa vowel harmony need not be stipulated in a language-specific manner, as the linear approach does, since they are predicted to follow automatically as consequences of the nature of the theory itself.