Congenital myasthenic syndromes: genetic defects of the neuromuscular junction (original) (raw)
Related papers
Congenital myasthenic syndromes: Progress over the past decade
Muscle & Nerve, 2003
Congenital myasthenic syndromes (CMS) stem from defects in presynaptic, synaptic basal lamina, and postsynaptic proteins. The presynaptic CMS are associated with defects that curtail the evoked release of acetylcholine (ACh) quanta or ACh resynthesis. Defects in ACh resynthesis have now been traced to mutations in choline acetyltransferase. A basal lamina CMS is caused by mutations in the collagenic tail subunit (ColQ) of the endplate species of acetylcholinesterase that prevent the tail subunit from associating with catalytic subunits or from becoming inserted into the synaptic basal lamina. Most postsynaptic CMS are caused by mutations in subunits of the acetylcholine receptor (AChR) that alter the kinetic properties or decrease the expression of AChR. The kinetic mutations increase or decrease the synaptic response to ACh and result in slow-and fast-channel syndromes, respectively. Most low-expressor mutations reside in the AChR ⑀ subunit and are partially compensated by residual expression of the fetal type ␥ subunit. In a subset of CMS patients, endplate AChR deficiency is caused by mutations in rapsyn, a molecule that plays a critical role in concentrating AChR in the postsynaptic membrane.
Muscle & Nerve, 1993
A 21-year-old woman had myasthenic symptoms since birth that responded poorly to anticholinesterase therapy. Tests for acetylcholine receptor (AChR) antibodies were negative. An intercostal muscle specimen was obtained to investigate the character of the neuromuscular transmission defect. There were no immune deposits at the endplates. The quanta1 content of the endplate potential was normal. Miniature endplate potentials and currents were very small, but the number of AChR per endplate was normal. On electron microscopy, the synaptic vesicles were of normal size, the junctional folds were intact, and the density and distribution of AChR on the folds was normal. The kinetic properties of AChR were studied by analysis of acetylcholine (ACh)induced current noise. The mean single channel conductance was normal. The noise power spectrum was abnormal, containing two components of different time course. This could result from an abnormal interaction of ACh with AChR, or from two populations of AChR at the endplate. The second possibility is unlikely because if two populations of AChR were present at the endplate, then both would have to have low conductance to explain the small miniature endplate current, but the average conductance of the channels that did open was normal. 0
Congenital myasthenic syndromes: I. Deficiency and short open-time of the acetylcholine receptor
Muscle & Nerve, 1993
A 5.5-year-old girl had myasthenic symptoms since birth. Tests for antiacetylcholine receptor (AChR) antibodies were negative. To investigate the character of the neuromuscular transmission defect, an intercostal muscle specimen was obtained at age 27 months. Immune deposits were absent from the endplates. On electron microscopy, most postsynaptic regions appeared normal, but the density of AChR on the junctional folds was diffusely reduced. In vitro microelectrode studies revealed that the number of transmitter quanta released by nerve impulse was normal. The amplitude of miniature of endplate potentials and currents was abnormally low. A study of the kinetic properties of AChR by analysis of acetylcholine-induced current noise demonstrated a significant decrease in mean channel open-time; the mean channel conductance was normal. The safety margin of neuromuscular transmission in this disorder is likely to be compromised by the deficiency and abnormal kinetic properties of AChR. The findings are unique among those patients with congenital AChR deficiency de-
Human Molecular Genetics, 1997
We describe and functionally characterize six mutations of the acetylcholine receptor (AChR) epsilon subunit gene in three congenital myasthenic syndrome patients. Endplate studies demonstrated severe endplate AChR deficiency, dispersed endplate regions and well preserved junctional folds in all three patients. Electrophysiologic studies were consistent with expression of the fetal gamma-AChR at the endplates in one patient, prolongation of some channel events in another and gamma-AChR expression as well as some shorter than normal channel events in still another. Genetic analysis revealed two recessive and heteroallelic epsilon subunit gene mutations in each patient. One mutation in each (epsilonC190T [epsilon R64X], epsilon 127ins5 and epsilon 553del 7) generates a nonsense codon that predicts truncation of the epsilon subunit in its N-terminal, extracellular domain; and one mutation in each generates a missense codon (epsilon R147L, epsilon P245L and epsilon R311W). None of the mutations was detected in 100 controls. Expression studies in HEK cells indicate that the three nonsense mutations are null mutations and that surface expression of AChRs harboring the missense mutations is significantly reduced. Kinetic analysis of AChRs harboring the missense mutations show that epsilon R147L is kinetically benign, epsilon P245L prolongs burst open duration 2-fold by slowing the rate of channel closing and epsilon R311W shortens burst duration 2-fold by slowing the rate of channel opening and speeding the rate of ACh dissociation. The modest changes in activation kinetics are probably overshadowed by reduced expression of the missense mutations. The consequences of the endplate AChR deficiency are mitigated by persistent expression of gamma-AChR, changes in the release of transmitter quanta and appearance of multiple endplate regions on the muscle fiber.
Congenital myasthenic syndromes: A diverse array of molecular targets
Journal of Neurocytology, 2003
The neuromuscular junction (NMJ) has served as a prototype for understanding mechanisms underlying synaptic transmission over the past 50 years. More recently, analysis of congenital myasthenic syndromes (CMS) revealed a diverse array of molecular targets and delineated their contributions to synaptic function. Clinical, electrophysiologic and morphologic studies have paved the way for detecting CMS-related mutations in proteins such as choline acetyltransferase acetylcholinesterase, the acetylcholine receptor, rapsyn, and the voltage-gated sodium channel of the Na v 1.4 type. Further studies of the mutant proteins have allowed us to correlate the effects of the mutations with predicted alterations in protein structure. In this review, we focus on the symptomatology of the CMS, consider the factors that impair neuromuscular transmission, survey the mutations that have been uncovered in the different synaptic proteins, and consider the functional implications of the identified mutations.
Human Molecular Genetics, 1996
Mutations in genes encoding the ε, δ, β and α subunits of the end plate acetylcholine (ACh) receptor (AChR) are described and functionally characterized in three slow-channel congenital myasthenic syndrome patients. All three had prolonged end plate currents and AChR channel opening episodes and an end plate myopathy with loss of AChR from degenerating junctional folds. Genetic analysis revealed heterozygous mutations: εL269F and δQ267E in Patient 1, βV266M in Patient 2, and αN217K in Patient 3 that were not detected in 100 normal controls. Patients 1 and 2 have no similarly affected relatives; in Patient 3, the mutation cosegregates with the disease in three generations. εL269F, δQ267E and βV266M occur in the second and αN217K in the first transmembrane domain of AChR subunits; all have been postulated to contribute to the lining of the upper half of the channel lumen and all but δQ267E are positioned toward the channel lumen, and introduce an enlarged side chain. Expression studies in HEK cells indicate that all of the mutations express normal amounts of AChR. εL269F, βV266M, and αN217K slow the rate of channel closure in the presence of ACh and increase apparent affinity for ACh; εL269F and αN217K enhance desensitization, and εL269F and βV266M cause pathologic channel openings in the absence of ACh, rendering the channel leaky. δQ267E has none of these effects and is therefore a rare polymorphism or a benign mutation. The end plate myopathy stems from cationic overloading of the postsynaptic region. The safety margin of neuromuscular transmission is compromised by AChR loss from the junctional folds and by a depolarization block owing to temporal summation of prolonged end plate potentials at physiologic rates of stimulation.
Balkan Journal of Medical Genetics, 2019
Congenital myasthenic syndrome (CMS) constitutes a group of inherited disorders of neuromuscular junctions. The majority of postsynaptic syndromes result from mutations in the CHRNE gene that causes muscle nicotine acetylcholine deficiency. In this study, we report on a 2 and a half-year-old boy with normal developmental milestones and bilateral ptosis. Clinical courses, electrophysiological studies and molecular genetic analysis were assessed. Polymerase chain reaction (PCR) and direct DNA sequencing of the CHRNE gene were performed for the proband and all the family members. A novel homozygous missense mutation of c.973G>T was found in the CHRNE gene. Segregation studies were suggested to be the genetic cause of the disease. Using three in silico tools and the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) variant classification guidelines indicated that the novel variant c.973G>T was likely pathogenic. Our results recommende...
Current understanding of congenital myasthenic syndromes
Current Opinion in Pharmacology, 2005
Investigation of congenital myasthenic syndromes (CMSs) disclosed a diverse array of molecular targets at the motor endplate. Clinical, electrophysiologic and morphologic studies paved the way for detecting CMS-related mutations in proteins such as the acetylcholine receptor, acetylcholinesterase, choline acetyltransferase, rapsyn, MuSK and Na v 1.4. Analysis of electrophysiologic and biochemical properties of mutant proteins expressed in heterologous systems contributed crucially to defining the molecular consequences of the observed mutations and resulted in improved therapy of different CMSs. Recent crystallography studies of choline acetyltransferase and homology structural models of the acetylcholine receptor are providing further clues to how point mutations alter protein function.
Annals of Neurology, 1993
We describe here a new congenital myasthenic syndrome associated with a kinetic abnormality of the acetylcholine receptor (AChR) channel. The propositus had poor suck and cry after birth. Subsequently, she had intermittent ocular symptoms and fatigued abnormally on exertion. At age 9 years, significant weakness was detected only in the frontalis, levator palpebrae, and neck flexor muscles. Electromyography showed no decrement in limb muscles but single-fiber examination of the facial muscles was consistent with a neuromuscular transmission defect. The ocular symptoms responded partially to pyridostigmine, but the abnormal fatigability did not. Tests for anti-AChR antibodies were negative. A younger sister had elements of the same disease. An intercostal muscle specimen was obtained from the propositus at age 9 years for endplate studies. The quantal content of the endplate potential was normal. Miniature endplate currents were abnormally large and their decay time constant was abnormally short. AChR channel properties were studied by analysis of acetylcholine-induced current noise. The mean single-channel conductance was increased 1.7-fold and the mean channel open time was 30% shorter than normal. The number of AChR per endplate was normal. Electron microscopy of most endplates showed no abnormdity, but a few were degenerating or simplified. The channel abnormality may stem from a point mutation in an AChR subunit affecting a single amino acid residue lining the pore of the AChR channel. The mechanism by which the physiological abnormality produces clinical symptoms is not known, but possible explanations are considered.