Off-shell superconformal nonlinear sigma-models in three dimensions (original) (raw)
Abstract
We develop superspace techniques to construct general off-shell N ≤ 4 superconformal sigma-models in three space-time dimensions. The most general N = 3 and N = 4 superconformal sigma-models are constructed in terms of N = 2 chiral superfields. Several superspace proofs of the folklore statement that N = 3 supersymmetry implies N = 4 are presented both in the on-shell and off-shell settings. We also elaborate on (super)twistor realisations for (super)manifolds on which the three-dimensional N -extended superconformal groups act transitively and which include Minkowski space as a subspace. 7 Off-shell N = 3 superconformal sigma-models 33 7.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (80)
- J. Bagger and N. Lambert, "Modeling multiple M2's," Phys. Rev. D 75, 045020 (2007) [arXiv:hep- th/0611108];
- "Gauge symmetry and supersymmetry of multiple M2-branes," Phys. Rev. D 77, 065008 (2008) [arXiv:0711.0955 [hep-th]]; "Comments on multiple M2-branes," JHEP 0802, 105 (2008) [arXiv:0712.3738 [hep-th]].
- A. Gustavsson, "Algebraic structures on parallel M2-branes," Nucl. Phys. B 811, 66 (2009) [arXiv:0709.1260 [hep-th]].
- O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, "N=6 superconformal Chern-Simons- matter theories, M2-branes and their gravity duals," JHEP 0810, 091 (2008) [arXiv:0806.1218 [hep-th]].
- E. Bergshoeff, S. Cecotti, H. Samtleben and E. Sezgin, "Superconformal sigma models in three dimensions," Nucl. Phys. B 838, 266 (2010) [arXiv:1002.4411 [hep-th]].
- L. Alvarez-Gaumé and D. Z. Freedman, "Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model," Commun. Math. Phys. 80, 443 (1981).
- B. de Wit, A. K. Tollsten and H. Nicolai, "Locally supersymmetric D = 3 nonlinear sigma models," Nucl. Phys. B 392, 3 (1993) [arXiv:hep-th/9208074].
- E. Sezgin and Y. Tanii, "Superconformal sigma models in higher than two dimensions," Nucl. Phys. B 443, 70 (1995) [arXiv:hep-th/9412163].
- G. W. Gibbons and P. Rychenkova, "Cones, tri-Sasakian structures and superconformal invariance," Phys. Lett. B 443, 138 (1998) [arXiv:hep-th/9809158].
- B. de Wit, M. Roček and S. Vandoren, "Hypermultiplets, hyperkähler cones and quaternion-Kähler geometry," JHEP 0102, 039 (2001) [arXiv:hep-th/0101161].
- B. de Wit, M. Rocek and S. Vandoren, "Gauging isometries on hyperKähler cones and quaternion- Kähler manifolds," Phys. Lett. B 511, 302 (2001) [arXiv:hep-th/0104215].
- S. M. Kuzenko, "On compactified harmonic / projective superspace, 5D superconformal theories, and all that," Nucl. Phys. B 745, 176 (2006) [arXiv:hep-th/0601177].
- S. M. Kuzenko, "On superconformal projective hypermultiplets," JHEP 0712, 010 (2007) [arXiv:0710.1479[hep-th]].
- S. M. Kuzenko, U. Lindström and R. von Unge, "New extended superconformal sigma models and quaternion Kähler manifolds," JHEP 0909, 119 (2009) [arXiv:0906.4393 [hep-th]].
- S. M. Kuzenko, "N = 2 supersymmetric sigma-models and duality," JHEP 1001, 115 (2010) [arXiv:0910.5771 [hep-th]].
- A. Karlhede, U. Lindström and M. Roček, "Self-interacting tensor multiplets in N = 2 superspace," Phys. Lett. B 147, 297 (1984).
- U. Lindström and M. Roček, "New hyperkähler metrics and new supermultiplets," Commun. Math. Phys. 115, 21 (1988).
- U. Lindström and M. Roček, "N = 2 super Yang-Mills theory in projective superspace," Commun. Math. Phys. 128, 191 (1990).
- A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, "Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace," Class. Quant. Grav. 1, 469 (1984).
- A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky and E. S. Sokatchev, Harmonic Superspace, Cambridge University Press, 2001.
- A. A. Rosly, "Super Yang-Mills constraints as integrability conditions," in Proceedings of the In- ternational Seminar on Group Theoretical Methods in Physics," (Zvenigorod, USSR, 1982), M. A. Markov (Ed.), Nauka, Moscow, 1983, Vol. 1, p. 263 (in Russian);
- A. A. Rosly and A. S. Schwarz, "Supersymmetry in a space with auxiliary dimensions," Commun. Math. Phys. 105, 645 (1986).
- S. M. Kuzenko, "Projective superspace as a double-punctured harmonic superspace," Int. J. Mod. Phys. A 14, 1737 (1999) [arXiv:hep-th/9806147].
- F. Gonzalez-Rey, M. Roček, S. Wiles, U. Lindström and R. von Unge, "Feynman rules in N = 2 projective superspace. I: Massless hypermultiplets," Nucl. Phys. B 516, 426 (1998) [arXiv:hep- th/9710250].
- S. M. Kuzenko, U. Lindstrom and R. von Unge, "New supersymmetric sigma-model duality," JHEP 1010, 072 (2010) [arXiv:1006.2299 [hep-th]].
- B. de Wit, B. Kleijn and S. Vandoren, "Rigid N = 2 superconformal hypermultiplets," in Super- symmetries and quantum symmetries, J. Wess and E. A. Ivanov (Eds.), Springer-Verlag, 1999, p. 37 (Lectures Notes in Physics, Vol. 524) arXiv:hep-th/9808160.
- B. de Wit, B. Kleijn and S. Vandoren, "Superconformal hypermultiplets," Nucl. Phys. B 568, 475 (2000) [arXiv:hep-th/9909228].
- J. Bagger and E. Witten, "Matter couplings in N = 2 supergravity," Nucl. Phys. B 222, 1 (1983).
- A. Swann, "HyperKähler and quaternion Kähler geometry," Math. Ann. 289, 421 (1991).
- K. Galicki, "Geometry of the scalar couplings in N = 2 supergravity models," Class. Quant. Grav. 9, 27 (1992).
- S. M. Kuzenko, U. Lindstrom and G. Tartaglino-Mazzucchelli, "Off-shell supergravity-matter cou- plings in three dimensions," arXiv:1101.4013 [hep-th].
- S. M. Kuzenko and G. Tartaglino-Mazzucchelli, "Five-dimensional superfield supergravity," Phys. Lett. B 661, 42 (2008) [arXiv:0710.3440 [hep-th]]. "Super-Weyl invariance in 5D supergravity," JHEP 0804, 032 (2008) [arXiv:0802.3953 [hep-th]].
- S. M. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, "4D N=2 supergravity and projective superspace," JHEP 0809, 051 (2008) [arXiv:0805.4683];
- "On conformal supergravity and projective superspace," JHEP 0908, 023 (2009) [arXiv:0905.0063 [hep-th]].
- S. J. Gates, Jr., M. T. Grisaru, M. Roček and W. Siegel, Superspace, or One Thousand and One Lessons in Supersymmetry, Front. Phys. 58, 1 (1983) [arXiv:hep-th/0108200].
- N. J. Hitchin, A. Karlhede, U. Lindström and M. Roček, "Hyperkähler metrics and supersymmetry," Commun. Math. Phys. 108, 535 (1987).
- B. M. Zupnik and D. V. Hetselius, "Three-dimensional extended supersymmetry in harmonic super- space," Sov. J. Nucl. Phys. 47, 730 (1988) [Yad. Fiz. 47, 1147 (1988)].
- B. M. Zupnik, "Harmonic superspaces for three-dimensional theories," in: Supersymmetries and Quantum Symmetries, J. Wess and E. Ivanov (Eds.), Springer, Berlin, 1999, pp. 116-123, arXiv:hep- th/9804167.
- I. L. Buchbinder, E. A. Ivanov, O. Lechtenfeld, N. G. Pletnev, I. B. Samsonov and B. M. Zupnik, "ABJM models in N=3 harmonic superspace," JHEP 0903, 096 (2009) [arXiv:0811.4774 [hep-th]].
- W. Siegel, "Unextended superfields in extended supersymmetry," Nucl. Phys. B 156, 135 (1979);
- B. M. Zupnik and D. G. Pak, "Superfield formulation of the simplest three-dimensional gauge the- ories and conformal supergravities," Theor. Math. Phys. 77, 1070 (1988) [Teor. Mat. Fiz. 77, 97 (1988)];
- E. A. Ivanov, "Chern-Simons matter systems with manifest N=2 supersymmetry," Phys. Lett. B 268, 203 (1991);
- S. J. Gates Jr. and H. Nishino, "Chern-Simons theories with supersym- metries in three-dimensions," Int. J. Mod. Phys. A 8, 3371 (1993); "Remarks on the N=2 super- symmetric Chern-Simons theories," Phys. Lett. B 281, 72 (1992);
- R. Brooks and S. J. Gates Jr., "Extended supersymmetry and super-BF gauge theories," Nucl. Phys. B 432, 205 (1994) [arXiv:hep- th/9407147].
- P. S. Howe and M. I. Leeming, "Harmonic superspaces in low dimensions," Class. Quant. Grav. 11, 2843 (1994) [arXiv:hep-th/9408062].
- A. Uhlmann, "The closure of Minkowski space," Acta Phys. Pol. 24, 295 (1963).
- R. Penrose, "Twistor algebra," J. Math. Phys. 8, 345 (1967);
- R. Penrose and M. A. H. MacCallum, "Twistor theory: An approach to the quantization of fields and space-time," Phys. Rept. 6, 241 (1972).
- I. E. Segal, Mathematical Cosmology and Extragalactic Astronomy, Academic Press, New York, 1976.
- I. T. Todorov, Conformal Description of Spinning Particles, Springer, Berlin, 1986.
- R. S. Ward and R. O. Wells, Twistor Geometry and Field Theory, Cambridge University Press, Cambridge, 1991.
- R. Berndt, An Introduction to Symplectic Geometry, (Graduate Studies in Mathematics, Vol. 26), Amer. Math. Soc., Providence, RI, 2001.
- P. A. M. Dirac, "Wave equations in conformal space," Ann. Math. 37, 429 (1936).
- H. Weyl, Space-Time-Matter, 4th Edition, Dover Publications, New York, 1922.
- Yu. I. Manin, "Gauge fields and holomorphic geometry," J. Soviet Math. 21, 465 (1983);
- "Holo- morphic supergeometry and Yang-Mills superfields," J. Soviet Math. 30, 1927 (1985);
- Gauge Field Theory and Complex Geometry, Springer, Berlin, 1988.
- A. Ferber, "Supertwistors and conformal supersymmetry," Nucl. Phys. B 132, 55 (1978).
- A. A. Rosly, "Gauge fields in superspace and twistors," Class. Quant. Grav. 2, 693 (1985).
- J. Lukierski and A. Nowicki, "General superspaces from supertwistors," Phys. Lett. B 211, 276 (1988).
- P. S. Howe and G. G. Hartwell, "A superspace survey," Class. Quant. Grav. 12, 1823 (1995).
- M. F. Sohnius, "The conformal group in superspace," in Quantum Theory and the Structures of Time and Space, Vol. 2, L. Castell , M. Drieschner and C. F. von Weizsäcker (Eds.), Carl Hanser Verlag, München, 1977, p. 241.
- W. Lang, "Construction of the minimal superspace translation tensor and the derivation of the supercurrent," Nucl. Phys. B 179, 106 (1981).
- K. i. Shizuya, "Supercurrents and superconformal symmetry," Phys. Rev. D 35, 1848 (1987).
- I. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk Through Superspace, IOP, Bristol, 1998.
- J.-H. Park, "N = 1 superconformal symmetry in 4-dimensions," Int. J. Mod. Phys. A 13 (1998) 1743 [arXiv:hep-th/9703191].
- H. Osborn, "N = 1 superconformal symmetry in four-dimensional quantum field theory," Annals Phys. 272, 243 (1999) [hep-th/9808041].
- J.-H. Park, "Superconformal symmetry in three-dimensions," J. Math. Phys. 41, 7129 (2000) [arXiv:hep-th/9910199].
- J.-H. Park, "Superconformal symmetry and correlation functions," Nucl. Phys. B 559, 455 (1999) [hep-th/9903230].
- J.-H. Park, "Superconformal symmetry in six-dimensions and its reduction to four," Nucl. Phys. B 539, 599 (1999) [hep-th/9807186].
- I. L. Buchbinder, N. G. Pletnev and I. B. Samsonov, "Effective action of three-dimensional extended supersymmetric matter on gauge superfield background," JHEP 1004, 124 (2010) [arXiv:1003.4806 [hep-th]].
- U. Lindström and M. Roček, "Properties of hyperkähler manifolds and their twistor spaces," Com- mun. Math. Phys. 293, 257 (2010) [arXiv:0807.1366 [hep-th]].
- S. J. Gates Jr. and S. M. Kuzenko, "The CNM-hypermultiplet nexus," Nucl. Phys. B 543, 122 (1999) [arXiv:hep-th/9810137];
- "4D N = 2 supersymmetric off-shell sigma models on the cotangent bundles of Kähler manifolds," Fortsch. Phys. 48, 115 (2000) [arXiv:hep-th/9903013].
- M. Arai, S. M. Kuzenko and U. Lindström, "Polar supermultiplets, Hermitian symmetric spaces and hyperkähler metrics," JHEP 0712, 008 (2007) [arXiv:0709.2633 [hep-th]].
- J. A. Bagger, "Supersymmetric sigma models," Lectures given at the 1984 NATO Advanced Study Institute on Supersymmetry, (Bonn, Germany, August 1984); reprinted in Supergravities in Diverse Dimensions, A. Salam and E. Sezgin (Eds.) North-Holland/World Scientific, 1989, Vol. 1, pp. 569- 611.
- U. Lindström and M. Roček, "Scalar tensor duality and N = 1, 2 nonlinear sigma models," Nucl. Phys. B 222, 285 (1983).
- C. M. Hull, A. Karlhede, U. Lindström and M. Roček, "Nonlinear sigma models and their gauging in and out of superspace," Nucl. Phys. B 266, 1 (1986).
- B. Zumino, "Supersymmetry and Kähler manifolds," Phys. Lett. B 87, 203 (1979).
- J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University Press, Princeton, 1992.