Off-shell superconformal nonlinear sigma-models in three dimensions (original) (raw)

Abstract

We develop superspace techniques to construct general off-shell N ≤ 4 superconformal sigma-models in three space-time dimensions. The most general N = 3 and N = 4 superconformal sigma-models are constructed in terms of N = 2 chiral superfields. Several superspace proofs of the folklore statement that N = 3 supersymmetry implies N = 4 are presented both in the on-shell and off-shell settings. We also elaborate on (super)twistor realisations for (super)manifolds on which the three-dimensional N -extended superconformal groups act transitively and which include Minkowski space as a subspace. 7 Off-shell N = 3 superconformal sigma-models 33 7.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (80)

  1. J. Bagger and N. Lambert, "Modeling multiple M2's," Phys. Rev. D 75, 045020 (2007) [arXiv:hep- th/0611108];
  2. "Gauge symmetry and supersymmetry of multiple M2-branes," Phys. Rev. D 77, 065008 (2008) [arXiv:0711.0955 [hep-th]]; "Comments on multiple M2-branes," JHEP 0802, 105 (2008) [arXiv:0712.3738 [hep-th]].
  3. A. Gustavsson, "Algebraic structures on parallel M2-branes," Nucl. Phys. B 811, 66 (2009) [arXiv:0709.1260 [hep-th]].
  4. O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, "N=6 superconformal Chern-Simons- matter theories, M2-branes and their gravity duals," JHEP 0810, 091 (2008) [arXiv:0806.1218 [hep-th]].
  5. E. Bergshoeff, S. Cecotti, H. Samtleben and E. Sezgin, "Superconformal sigma models in three dimensions," Nucl. Phys. B 838, 266 (2010) [arXiv:1002.4411 [hep-th]].
  6. L. Alvarez-Gaumé and D. Z. Freedman, "Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model," Commun. Math. Phys. 80, 443 (1981).
  7. B. de Wit, A. K. Tollsten and H. Nicolai, "Locally supersymmetric D = 3 nonlinear sigma models," Nucl. Phys. B 392, 3 (1993) [arXiv:hep-th/9208074].
  8. E. Sezgin and Y. Tanii, "Superconformal sigma models in higher than two dimensions," Nucl. Phys. B 443, 70 (1995) [arXiv:hep-th/9412163].
  9. G. W. Gibbons and P. Rychenkova, "Cones, tri-Sasakian structures and superconformal invariance," Phys. Lett. B 443, 138 (1998) [arXiv:hep-th/9809158].
  10. B. de Wit, M. Roček and S. Vandoren, "Hypermultiplets, hyperkähler cones and quaternion-Kähler geometry," JHEP 0102, 039 (2001) [arXiv:hep-th/0101161].
  11. B. de Wit, M. Rocek and S. Vandoren, "Gauging isometries on hyperKähler cones and quaternion- Kähler manifolds," Phys. Lett. B 511, 302 (2001) [arXiv:hep-th/0104215].
  12. S. M. Kuzenko, "On compactified harmonic / projective superspace, 5D superconformal theories, and all that," Nucl. Phys. B 745, 176 (2006) [arXiv:hep-th/0601177].
  13. S. M. Kuzenko, "On superconformal projective hypermultiplets," JHEP 0712, 010 (2007) [arXiv:0710.1479[hep-th]].
  14. S. M. Kuzenko, U. Lindström and R. von Unge, "New extended superconformal sigma models and quaternion Kähler manifolds," JHEP 0909, 119 (2009) [arXiv:0906.4393 [hep-th]].
  15. S. M. Kuzenko, "N = 2 supersymmetric sigma-models and duality," JHEP 1001, 115 (2010) [arXiv:0910.5771 [hep-th]].
  16. A. Karlhede, U. Lindström and M. Roček, "Self-interacting tensor multiplets in N = 2 superspace," Phys. Lett. B 147, 297 (1984).
  17. U. Lindström and M. Roček, "New hyperkähler metrics and new supermultiplets," Commun. Math. Phys. 115, 21 (1988).
  18. U. Lindström and M. Roček, "N = 2 super Yang-Mills theory in projective superspace," Commun. Math. Phys. 128, 191 (1990).
  19. A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, "Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace," Class. Quant. Grav. 1, 469 (1984).
  20. A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky and E. S. Sokatchev, Harmonic Superspace, Cambridge University Press, 2001.
  21. A. A. Rosly, "Super Yang-Mills constraints as integrability conditions," in Proceedings of the In- ternational Seminar on Group Theoretical Methods in Physics," (Zvenigorod, USSR, 1982), M. A. Markov (Ed.), Nauka, Moscow, 1983, Vol. 1, p. 263 (in Russian);
  22. A. A. Rosly and A. S. Schwarz, "Supersymmetry in a space with auxiliary dimensions," Commun. Math. Phys. 105, 645 (1986).
  23. S. M. Kuzenko, "Projective superspace as a double-punctured harmonic superspace," Int. J. Mod. Phys. A 14, 1737 (1999) [arXiv:hep-th/9806147].
  24. F. Gonzalez-Rey, M. Roček, S. Wiles, U. Lindström and R. von Unge, "Feynman rules in N = 2 projective superspace. I: Massless hypermultiplets," Nucl. Phys. B 516, 426 (1998) [arXiv:hep- th/9710250].
  25. S. M. Kuzenko, U. Lindstrom and R. von Unge, "New supersymmetric sigma-model duality," JHEP 1010, 072 (2010) [arXiv:1006.2299 [hep-th]].
  26. B. de Wit, B. Kleijn and S. Vandoren, "Rigid N = 2 superconformal hypermultiplets," in Super- symmetries and quantum symmetries, J. Wess and E. A. Ivanov (Eds.), Springer-Verlag, 1999, p. 37 (Lectures Notes in Physics, Vol. 524) arXiv:hep-th/9808160.
  27. B. de Wit, B. Kleijn and S. Vandoren, "Superconformal hypermultiplets," Nucl. Phys. B 568, 475 (2000) [arXiv:hep-th/9909228].
  28. J. Bagger and E. Witten, "Matter couplings in N = 2 supergravity," Nucl. Phys. B 222, 1 (1983).
  29. A. Swann, "HyperKähler and quaternion Kähler geometry," Math. Ann. 289, 421 (1991).
  30. K. Galicki, "Geometry of the scalar couplings in N = 2 supergravity models," Class. Quant. Grav. 9, 27 (1992).
  31. S. M. Kuzenko, U. Lindstrom and G. Tartaglino-Mazzucchelli, "Off-shell supergravity-matter cou- plings in three dimensions," arXiv:1101.4013 [hep-th].
  32. S. M. Kuzenko and G. Tartaglino-Mazzucchelli, "Five-dimensional superfield supergravity," Phys. Lett. B 661, 42 (2008) [arXiv:0710.3440 [hep-th]]. "Super-Weyl invariance in 5D supergravity," JHEP 0804, 032 (2008) [arXiv:0802.3953 [hep-th]].
  33. S. M. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, "4D N=2 supergravity and projective superspace," JHEP 0809, 051 (2008) [arXiv:0805.4683];
  34. "On conformal supergravity and projective superspace," JHEP 0908, 023 (2009) [arXiv:0905.0063 [hep-th]].
  35. S. J. Gates, Jr., M. T. Grisaru, M. Roček and W. Siegel, Superspace, or One Thousand and One Lessons in Supersymmetry, Front. Phys. 58, 1 (1983) [arXiv:hep-th/0108200].
  36. N. J. Hitchin, A. Karlhede, U. Lindström and M. Roček, "Hyperkähler metrics and supersymmetry," Commun. Math. Phys. 108, 535 (1987).
  37. B. M. Zupnik and D. V. Hetselius, "Three-dimensional extended supersymmetry in harmonic super- space," Sov. J. Nucl. Phys. 47, 730 (1988) [Yad. Fiz. 47, 1147 (1988)].
  38. B. M. Zupnik, "Harmonic superspaces for three-dimensional theories," in: Supersymmetries and Quantum Symmetries, J. Wess and E. Ivanov (Eds.), Springer, Berlin, 1999, pp. 116-123, arXiv:hep- th/9804167.
  39. I. L. Buchbinder, E. A. Ivanov, O. Lechtenfeld, N. G. Pletnev, I. B. Samsonov and B. M. Zupnik, "ABJM models in N=3 harmonic superspace," JHEP 0903, 096 (2009) [arXiv:0811.4774 [hep-th]].
  40. W. Siegel, "Unextended superfields in extended supersymmetry," Nucl. Phys. B 156, 135 (1979);
  41. B. M. Zupnik and D. G. Pak, "Superfield formulation of the simplest three-dimensional gauge the- ories and conformal supergravities," Theor. Math. Phys. 77, 1070 (1988) [Teor. Mat. Fiz. 77, 97 (1988)];
  42. E. A. Ivanov, "Chern-Simons matter systems with manifest N=2 supersymmetry," Phys. Lett. B 268, 203 (1991);
  43. S. J. Gates Jr. and H. Nishino, "Chern-Simons theories with supersym- metries in three-dimensions," Int. J. Mod. Phys. A 8, 3371 (1993); "Remarks on the N=2 super- symmetric Chern-Simons theories," Phys. Lett. B 281, 72 (1992);
  44. R. Brooks and S. J. Gates Jr., "Extended supersymmetry and super-BF gauge theories," Nucl. Phys. B 432, 205 (1994) [arXiv:hep- th/9407147].
  45. P. S. Howe and M. I. Leeming, "Harmonic superspaces in low dimensions," Class. Quant. Grav. 11, 2843 (1994) [arXiv:hep-th/9408062].
  46. A. Uhlmann, "The closure of Minkowski space," Acta Phys. Pol. 24, 295 (1963).
  47. R. Penrose, "Twistor algebra," J. Math. Phys. 8, 345 (1967);
  48. R. Penrose and M. A. H. MacCallum, "Twistor theory: An approach to the quantization of fields and space-time," Phys. Rept. 6, 241 (1972).
  49. I. E. Segal, Mathematical Cosmology and Extragalactic Astronomy, Academic Press, New York, 1976.
  50. I. T. Todorov, Conformal Description of Spinning Particles, Springer, Berlin, 1986.
  51. R. S. Ward and R. O. Wells, Twistor Geometry and Field Theory, Cambridge University Press, Cambridge, 1991.
  52. R. Berndt, An Introduction to Symplectic Geometry, (Graduate Studies in Mathematics, Vol. 26), Amer. Math. Soc., Providence, RI, 2001.
  53. P. A. M. Dirac, "Wave equations in conformal space," Ann. Math. 37, 429 (1936).
  54. H. Weyl, Space-Time-Matter, 4th Edition, Dover Publications, New York, 1922.
  55. Yu. I. Manin, "Gauge fields and holomorphic geometry," J. Soviet Math. 21, 465 (1983);
  56. "Holo- morphic supergeometry and Yang-Mills superfields," J. Soviet Math. 30, 1927 (1985);
  57. Gauge Field Theory and Complex Geometry, Springer, Berlin, 1988.
  58. A. Ferber, "Supertwistors and conformal supersymmetry," Nucl. Phys. B 132, 55 (1978).
  59. A. A. Rosly, "Gauge fields in superspace and twistors," Class. Quant. Grav. 2, 693 (1985).
  60. J. Lukierski and A. Nowicki, "General superspaces from supertwistors," Phys. Lett. B 211, 276 (1988).
  61. P. S. Howe and G. G. Hartwell, "A superspace survey," Class. Quant. Grav. 12, 1823 (1995).
  62. M. F. Sohnius, "The conformal group in superspace," in Quantum Theory and the Structures of Time and Space, Vol. 2, L. Castell , M. Drieschner and C. F. von Weizsäcker (Eds.), Carl Hanser Verlag, München, 1977, p. 241.
  63. W. Lang, "Construction of the minimal superspace translation tensor and the derivation of the supercurrent," Nucl. Phys. B 179, 106 (1981).
  64. K. i. Shizuya, "Supercurrents and superconformal symmetry," Phys. Rev. D 35, 1848 (1987).
  65. I. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk Through Superspace, IOP, Bristol, 1998.
  66. J.-H. Park, "N = 1 superconformal symmetry in 4-dimensions," Int. J. Mod. Phys. A 13 (1998) 1743 [arXiv:hep-th/9703191].
  67. H. Osborn, "N = 1 superconformal symmetry in four-dimensional quantum field theory," Annals Phys. 272, 243 (1999) [hep-th/9808041].
  68. J.-H. Park, "Superconformal symmetry in three-dimensions," J. Math. Phys. 41, 7129 (2000) [arXiv:hep-th/9910199].
  69. J.-H. Park, "Superconformal symmetry and correlation functions," Nucl. Phys. B 559, 455 (1999) [hep-th/9903230].
  70. J.-H. Park, "Superconformal symmetry in six-dimensions and its reduction to four," Nucl. Phys. B 539, 599 (1999) [hep-th/9807186].
  71. I. L. Buchbinder, N. G. Pletnev and I. B. Samsonov, "Effective action of three-dimensional extended supersymmetric matter on gauge superfield background," JHEP 1004, 124 (2010) [arXiv:1003.4806 [hep-th]].
  72. U. Lindström and M. Roček, "Properties of hyperkähler manifolds and their twistor spaces," Com- mun. Math. Phys. 293, 257 (2010) [arXiv:0807.1366 [hep-th]].
  73. S. J. Gates Jr. and S. M. Kuzenko, "The CNM-hypermultiplet nexus," Nucl. Phys. B 543, 122 (1999) [arXiv:hep-th/9810137];
  74. "4D N = 2 supersymmetric off-shell sigma models on the cotangent bundles of Kähler manifolds," Fortsch. Phys. 48, 115 (2000) [arXiv:hep-th/9903013].
  75. M. Arai, S. M. Kuzenko and U. Lindström, "Polar supermultiplets, Hermitian symmetric spaces and hyperkähler metrics," JHEP 0712, 008 (2007) [arXiv:0709.2633 [hep-th]].
  76. J. A. Bagger, "Supersymmetric sigma models," Lectures given at the 1984 NATO Advanced Study Institute on Supersymmetry, (Bonn, Germany, August 1984); reprinted in Supergravities in Diverse Dimensions, A. Salam and E. Sezgin (Eds.) North-Holland/World Scientific, 1989, Vol. 1, pp. 569- 611.
  77. U. Lindström and M. Roček, "Scalar tensor duality and N = 1, 2 nonlinear sigma models," Nucl. Phys. B 222, 285 (1983).
  78. C. M. Hull, A. Karlhede, U. Lindström and M. Roček, "Nonlinear sigma models and their gauging in and out of superspace," Nucl. Phys. B 266, 1 (1986).
  79. B. Zumino, "Supersymmetry and Kähler manifolds," Phys. Lett. B 87, 203 (1979).
  80. J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University Press, Princeton, 1992.