Prospective Diagnosis of 2-Methylbutyryl-CoA Dehydrogenase Deficiency in the Hmong Population by Newborn Screening Using Tandem Mass Spectrometry (original) (raw)
Related papers
Molecular genetics and metabolism, 2012
BACKGROUND: Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an autosomal recessive inborn error of mitochondrial fatty acid oxidation with highly variable biochemical, genetic, and clinical characteristics. SCADD has been associated with accumulation of butyryl-CoA byproducts, including butyrylcarnitine (C4), butyrylglycine, ethylmalonic acid (EMA), and methylsuccinic acid (MS) in body fluid and tissues. Differences in genotype frequencies have been shown between patients diagnosed clinically versus those diagnosed by newborn screening. Moreover, while patients diagnosed clinically have a variable clinical presentation including developmental delay, ketotic hypoglycemia, epilepsy and behavioral disorders, studies suggest patients diagnosed by newborn screening are largely asymptomatic. Scant information is published about the biochemical, genetic and clinical outcome of SCADD patients diagnosed by newborn screening. METHODS: We collected California newborn screening, follow...
Nutrients
Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD/MTPD) and medium chain acyl-CoA dehydrogenase deficiency (MCADD) were included in the expanded neonatal screening program (ENBS) in Czechia in 2009, allowing for the presymptomatic diagnosis and nutritional management of these patients. The aim of our study was to assess the nationwide impact of ENBS on clinical outcome. This retrospective study analysed acute events and chronic complications and their severity in pre-ENBS and post-ENBS cohorts. In total, 28 children (12 before, 16 after ENBS) were diagnosed with LCHADD/MTPD (incidence 0.8/100,000 before and 1.2/100,000 after ENBS). In the subgroup detected by ENBS, a significantly longer interval from birth to first acute encephalopathy was observed. In addition, improvement in neuropathy and cardiomyopathy (although statistically non-significant) was demonstrated in the post-ENBS subgroup. In the MCADD cohort, we included 69 patients (15 before, 54 after ENBS). The esti...
The Journal of Pediatrics, 2006
Neonatal screening programs for very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD) have recently been implemented. We report 2 newborns with elevated C14:1-carnitine levels on day 3 of life and normal levels on days 5 to 7. Enzyme and molecular analyses confirmed VLCADD in the first patient and heterozygosity in the second patient. We conclude that the diagnosis of VLCADD can be missed by acylcarnitine analysis during anabolic conditions. An increased C14:1-carnitine level can also occur in heterozygous individuals. Elevated C14:1-carnitine level on neonatal screening warrants further diagnostic workup even if a repeat sample demonstrates normal acylcarnitine levels.
Maternal medium-chain acyl-CoA dehydrogenase deficiency identified by newborn screening
Molecular Genetics and Metabolism, 2011
Medium-chain acyl-CoA dehydrogenase deficiency Expanded newborn screening Maternal Tandem mass spectrometry MCADD Maternal inborn error of metabolism Prior to the advent of expanded newborn screening, sudden and unexplained death was often the first and only symptom of medium-chain acyl-CoA dehydrogenase deficiency (MCADD). With the use of tandem mass spectrometry, infants can now be identified and treated before a life threatening metabolic decompensation occurs. Newborn screening has also been shown to detect previously undiagnosed maternal inborn errors of metabolism. We have now diagnosed two women with MCADD following the identification of low free carnitine in their newborns. While one of the women reported prior symptoms of fasting intolerance, neither had a history of metabolic decompensation or other symptoms consistent with a fatty acid oxidation disorder. These cases illustrate the importance of including urine organic acid analysis and an acylcarnitine profile as part of the confirmatory testing algorithm for mothers when low free carnitine is identified in their infants.
Molecular Genetics and Metabolism, 2008
The medical and neurodevelopmental characteristics of 14 children with short-chain acyl-CoA dehydrogenase deficiency (SCADD) are described. Eight were detected as neonates by newborn screening. Three children diagnosed on the basis of clinical symptoms had normal newborn screening results while 3 were born in states that did not screen for SCADD. Treatment included frequent feedings and a low fat diet. All children identified by newborn screening demonstrated medical and neuropsychological development within the normative range on follow-up, although one child had a relative weakness in the motor area and another child exhibited mild speech delay. Of the 3 clinically identified children with newborn screening results below the cutoff value, 2 were healthy and performed within the normal range on cognitive and motor tests at follow-up. Four clinically identified children with SCADD experienced persistent symptoms and/or developmental delay. However, in each of these cases, there were supplementary or alternative explanations for medical and neuropsychological deficits. Results indicated no genotypephenotype correlations. These findings suggest that SCADD might be benign and the clinical symptoms ascribed to SCADD reflective of ascertainment bias or that early identification and treatment prevented complications that may have occurred due to interaction between genetic susceptibility and other genetic factors or environmental stressors.
Evaluation of newborn screening for medium chain acyl-CoA dehydrogenase deficiency in 275 000 babies
Archives of Disease in Childhood - Fetal and Neonatal Edition, 2001
Objective-To evaluate newborn screening by tandem mass spectrometry for detection of medium chain acyl-CoA dehydrogenase (MCAD) deficiency, a fatty acid oxidation disorder with significant mortality in undiagnosed patients. Design-The following were studied: (a) 13 clinically detected MCAD deficient subjects, most homozygous for the common A985G mutation, whose newborn screening sample was available; (b) 275 653 consecutive neonates undergoing routine newborn screening. Screened infants with blood octanoylcarnitine levels > 1 µmol/l were analysed for the A985G mutation, had analysis of plasma and repeat blood spot acylcarnitines and urinary organic acids, and had fibroblast fatty acid oxidation or acylcarnitine studies. Result-Twelve of the 13 patients later diagnosed clinically had newborn octanoylcarnitine levels > 2.3 µmol/l. Twenty three screened babies had initial octanoylcarnitine levels > 1 µmol/l. Eleven of 12 babies with persistent abnormalities had metabolite and/or enzyme studies indicating MCAD deficiency. Only four were homozygous for the A985G mutation, the remainder carrying one copy. Conclusions-Most patients with symptomatic MCAD deficiency could be detected by newborn screening. Infants actually detected had a lower frequency of A985G alleles than clinically diagnosed cases and may have a lower risk of becoming symptomatic. (Arch Dis Child Fetal Neonatal Ed 2001;85:F105-F109) 85: F105-F109 Arch Dis Child Fetal Neonatal Ed http://fn.bmj.com/content/85/2/F105
The American Journal of Human Genetics, 2001
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most frequently diagnosed mitochondrial boxidation defect, and it is potentially fatal. Eighty percent of patients are homozygous for a common mutation, 985ArG, and a further 18% have this mutation in only one disease allele. In addition, a large number of rare disease-causing mutations have been identified and characterized. There is no clear genotype-phenotype correlation. High 985ArG carrier frequencies in populations of European descent and the usual avoidance of recurrent disease episodes by patients diagnosed with MCAD deficiency who comply with a simple dietary treatment suggest that MCAD deficiency is a candidate in prospective screening of newborns. Therefore, several such screening programs employing analysis of acylcarnitines in blood spots by tandem mass spectrometry (MS/MS) are currently used worldwide. No validation of this method by mutation analysis has yet been reported. We investigated for MCAD mutations in newborns from US populations who had been identified by prospective MS/MS-based screening of 930,078 blood spots. An MCAD-deficiency frequency of 1/15,001 was observed. Our mutation analysis shows that the MS/MS-based method is excellent for detection of MCAD deficiency but that the frequency of the 985ArG mutant allele in newborns with a positive acylcarnitine profile is much lower than that observed in clinically affected patients. Our identification of a new mutation, 199TrC, which has never been observed in patients with clinically manifested disease but was present in a large proportion of the acylcarnitine-positive samples, may explain this skewed ratio. Overexpression experiments showed that this is a mild folding mutation that exhibits decreased levels of enzyme activity only under stringent conditions. A carrier frequency of 1/500 in the general population makes the 199TrC mutation one of the three most prevalent mutations in the enzymes of fatty-acid oxidation.
Journal of Inherited Metabolic Disease, 2000
Patients with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency are unable to metabolize medium-chain fatty acids. Affected patients display a characteristic acylcarnitine profile when blood spots are collected after birth and analysed by tandem mass spectrometry. To determine the potential risk of metabolic decompensation in newborns with elevations of diagnostic metabolites (octanoylcarnitine>0.3, but <1 mmol/L), we investigated the relationship between octanoylcarnitine (C 8 ) concentration in neonatal blood spots and the 985A>G MCAD genotype. Octanoylcarnitine values from 7140 newborns' blood spots were sorted. The highest C 8 was $0.7 mmol/L, which is below the range in classical MCAD deficiency. Samples with C 8 levels above 0.25 mmol/L (group C) represented 1.4% of the total. Values between 0.05 and 0.25 mmol/L (group B) made up 87.8% of the total; 10.8% of the samples had C 8 values less than 0.05 mmol/L (group A). One hundred samples from each group were selected at random and genomic DNA was amplified by PCR and analysed for the presence of the 985A>G mutation. The analysed samples from groups A and B were all homozygous normal. The 100 samples from group C contained 26 samples that were heterozygous for the 985A>G mutation. These findings indicated that the frequency distribution of heterozygotes is not random within this population. Group C was further divided into C1, the 26 heterozygotes, and C2, the remaining 74 newborns in group C. In group C1 only 2 (8%) were in the 'high-risk' group characterized by either low birth weight or requiring admission to the neonatal intensive care unit. In contrast, 28 (38%) from C2 had low birth weight or were in the neonatal intensive care unit. In our dataset, C 8 /C 2 and C 8 /C 12 ratios were