Three years with adult human brown adipose tissue (original) (raw)

Abstract

The presence of active brown adipose tissue in adult humans has been recognized in general physiology only since 2007. The intervening three years established that the depots originally observed by 18 F-fluoro-deoxy-glucose positron emission tomography (FDG PET) scanning techniques really are brown adipose tissue depots because they are enriched for uncoupling protein 1 (UCP1). Reports of low apparent prevalence of brown adipose tissue based on retrospective studies of hospital records of FDG PET scans markedly underestimate true prevalence because such studies only reflect acute activity state; consequently, such retrospective studies cannot be conclusively analysed for factors influencing activity and amount of brown adipose tissue. Dedicated studies show that the true prevalence is 30-100%, depending on cohort. Warm temperature during the investigation-as well as adrenergic antagonistsinhibit tissue activity. There is probably no sexual dimorphism in the prevalence of brown adipose tissue. Outdoor temperature may affect the amount of brown adipose tissue, and the amount is negatively correlated with age and obesity. The presence of brown adipose tissue is associated with cold-induced nonshivering thermogenesis, and the tissue may be a major organ for glucose disposal. The decline in brown adipose tissue amount with increasing age may account for or aggravate middle-age obesity. Maintained activation of brown adipose tissue throughout life may thus protect against obesity and diabetes.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (106)

  1. Hany, T.F., E. Gharehpapagh, E.M. Kamel, et al. 2002. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur. J. Nuc.l Med. Mol. Imaging 29: 1393-1398.
  2. Nedergaard, J., T. Bengtsson & B. Cannon. 2007. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. 293: E444-E452.
  3. Rousseau, C., E. Bourbouloux, L. Campion, et al. 2006. Brown fat in breast cancer patients: analysis of serial (18)F- FDG PET/CT scans. Eur. J. Nucl. Med. Mol. Imaging 33: 785-791.
  4. Nedergaard, J. & B. Cannon. 2010. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab. 11: 268-272.
  5. Nedergaard, J., V. Golozoubova, A. Matthias, et al. 2001. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim. Biophys. Acta 1504: 82-106.
  6. Cannon, B. & J. Nedergaard. 2004. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84: 277-359.
  7. Virtanen, K.A., M.E. Lidell, J. Orava, et al. 2009. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360: 1518-1525.
  8. Petrovic, N., T.B. Walden, I.G. Shabalina, et al. 2010. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly dis- tinct from classic brown adipocytes. J. Biol. Chem. 285: 7153-7164.
  9. Atit, R., S.K. Sgaier, O.A. Mohamed, et al. 2006. Beta- catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev. Biol. 296: 164- 176.
  10. Timmons, J.A., K. Wennmalm, O. Larsson, et al. 2007. Myo- genic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl. Acad. Sci. USA 104: 4401-4406.
  11. Seale, P., B. Bjork, W. Yang, et al. 2008. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454: 961-967.
  12. Kajimura, S., P. Seale, K. Kubota, et al. 2009. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460: 1154-1158.
  13. Waldén, T.B. 2010. Regulatory factors that reveal three dis- tinct adipocytes: the brown, the white and the brite. Ph.D. thesis. Stockholm University.
  14. Zingaretti, M.C., F. Crosta, A. Vitali, et al. 2009. The pres- ence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 23: 3113-3120.
  15. Vallerand, A.L., F. Perusse & L.J. Bukowiecki. 1987. Cold exposure potentiates the effect of insulin on in vivo glucose uptake. Am. J. Physiol. 253: E179-E186.
  16. Marette, A. & L.J. Bukowiecki. 1991. Noradrenaline stimu- lates glucose transport in rat brown adipocytes by activating thermogenesis. Evidence that fatty acid activation of mito- chondrial respiration enhances glucose transport. Biochem. J. 277: 119-124.
  17. Inokuma, K., Y. Ogura-Okamatsu, C. Toda, et al. 2005. Un- coupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. Diabetes 54: 1385-1391.
  18. Lee, P., J.R. Greenfield, K.K. Ho & M.J. Fulham. 2010. A crit- ical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 299: E601-E606.
  19. Saito, M., Y. Okamatsu-Ogura, M. Msujisaki, K.T. & K. Nakada. 2007. Human brown adipose tissue evaluated by FDG-PET: activation by cold exposure. Int. J. Obes. 31(Suppl. 1): S32-S32.
  20. van Marken Lichtenbelt, W.D., J.W. Vanhommerig, N.M. Smulders, et al. 2009. Cold-activated brown adipose tissue in healthy men. N Engl. J. Med. 360: 1500-1508.
  21. Saito, M., Y. Okamatsu-Ogura, M. Matsushita, et al. 2009. High incidence of metabolically active brown adipose tis- sue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58: 1526-1531.
  22. Hu, H., D.L. Smith Jr., K.S. Nayak, et al. 2010. Identification of brown adipose tissue in mice with fat-water IDEAL-MRI. J. Magn. Reson. Imaging 31: 1195-1202.
  23. Branca, R.T. & W.S. Warren. 2010. In vivo brown adi- pose tissue detection and characterization using water- lipid intermolecular zero-quantum coherences. Mag. Re- son. Med. Advance online publication. doi: 10.1002/mrm. 22622.
  24. Foster, D.O. & M.L. Frydman. 1979. Tissue distribution of cold-induced thermogenesis in conscious warm-or cold- acclimated rats reevaluated from changes in tissue blood flow: The dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Can. J. Physiol. Pharmacol. 57: 257-270.
  25. Foster, D.O. & M.L. Frydman. 1978. Nonshivering thermo- genesis in the rat. II. Measurements of blood flow with mi- crospheres point to brown adipose tissue as the dominant site of the calorigenesis induced by noradrenaline. Can. J. Physiol. Pharmacol. 56: 110-122.
  26. Cannon, B. & J. Nedergaard. 2009. Thermogenesis chal- lenges the adipostat hypothesis for body-weight control. Proc. Nutr. Soc. 64: 401-407.
  27. Golozoubova, V., H. Gullberg, A. Matthias, et al. 2004. De- pressed thermogenesis but competent brown adipose tissue recruitment in mice devoid of all thyroid hormone receptors. Mol. Endocrinol. 18: 384-401.
  28. Lebron, L., A.J. Chou & J.A. Carrasquillo. 2010. Unilateral F-18 FDG uptake in the neck, in patients with sympathetic denervation. Clin. Nucl. Med. 35: 899-901.
  29. Tatsumi, M., J.M. Engles, T. Ishimori, et al. 2004. Intense (18)F-FDG uptake in brown fat can be reduced pharmaco- logically. J. Nucl. Med. 45: 1189-1193.
  30. Parysow, O., A.M. Mollerach, V. Jager, et al. 2007. Low-dose oral propranolol could reduce brown adipose tissue F-18 FDG uptake in patients undergoing PET scans. Clin. Nucl. Med. 32: 351-357.
  31. Soderlund, V., S.A. Larsson & H. Jacobsson. 2007. Reduction of FGD uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur. J. Nucl. Med. Mol. Imaging 34: 1018-1022.
  32. Agrawal, A., N. Nair & N.S. Baghel. 2009. A novel approach for reduction of brown fat uptake on FDG PET. Br. J. Radiol. 82: 626-631.
  33. Leslie, W.S., C.R. Hankey & M.E. Lean. 2007. Weight gain as an adverse effect of some commonly prescribed drugs: a systematic review. QJM 100: 395-404.
  34. Fukuchi, K., M. Tatsumi, Y. Ishida, et al. 2004. Radionu- clide imaging metabolic activity of brown adipose tissue in a patient with pheochromocytoma. Exp. Clin. Endocrinol. Diabetes 112: 601-603.
  35. Ramacciotti, C., O. Schneegans, H. Lang, et al. 2006. Dif- fuse uptake of brown fat on computed-tomography cou- pled positron emission tomoscintigraphy (PET-CT) for the exploration of extra-adrenal pheochromocytoma. Ann. En- docrinol (Paris) 67: 14-19.
  36. Hadi, M., C.C. Chen, M. Whatley, et al. 2007. Brown fat imaging with (18)F-6-fluorodopamine PET/CT, (18)F-FDG PET/CT, and (123)I-MIBG SPECT: a study of patients being evaluated for pheochromocytoma. J. Nucl. Med. 48: 1077- 1083.
  37. Kuji, I., E. Imabayashi, A. Minagawa, et al. 2008. Brown adi- pose tissue demonstrating intense FDG uptake in a patient with mediastinal pheochromocytoma. Ann. Nucl. Med. 22: 231-235.
  38. Yamaga, L.Y., A.F. Thom, J. Wagner, et al. 2008. The effect of catecholamines on the glucose uptake in brown adipose tissue demonstrated by (18)F-FDG PET/CT in a patient with adrenal pheochromocytoma. Eur. J. Nucl. Med.Mol. Imaging 35: 446-447.
  39. Iyer, R.B., C.C. Guo & N. Perrier. 2009. Adrenal pheochro- mocytoma with surrounding brown fat stimulation. Am. J. Roentgenol. 192: 300-301.
  40. Rehnmark, S. & J. Nedergaard. 1989. DNA synthesis in mouse brown adipose tissue is under ␤-adrenergic control. Exp. Cell Res. 180: 574-579.
  41. Ricquier, D., M. Néchad & G. Mory. 1982. Ultrastructural and biochemical characterization of human brown adipose tissue in pheochromocytoma. J. Clin. Endocrinol. Metab. 54: 803-807.
  42. Gelfand, M.J., M. O'Hara S, L.A. Curtwright & J.R. Maclean. 2005. Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr. Radiol. 35: 984-990.
  43. Aukema, T.S., W.V. Vogel, C.A. Hoefnagel & R.A. Valdés Ol- mos. 2010. Prevention of brown adipose tissue activation in 18F-FDG PET/CT of breast cancer patients receiving neoad- juvant systemic therapy. J. Nucl. Med. Technol. 24-27.
  44. Garcia, C.A., D. Van Nostrand, M. Majd, et al. 2004. Benzodiazepine-resistant "brown fat" pattern in positron emission tomography: two case reports of resolution with temperature control. Mol. Imaging Biol. 6: 368-372.
  45. Sturkenboom, M.G., O.S. Hoekstra, E.J. Postema, et al. 2009. A randomised controlled trial assessing the effect of oral diazepam on 18F-FDG uptake in the neck and upper chest region. Mol. Imaging Biol. 11: 364-368.
  46. Fueger, B.J., J. Czernin, I. Hildebrandt, et al. 2006. Impact of animal handling on the results of 18F-FDG PET studies in mice. J. Nucl. Med. 47: 999-1006.
  47. Maxwell, G.M., S. Nobbs & D.J. Bates. 1987. Diet-induced thermogenesis in cafeteria-fed rats: a myth? Am. J. Physiol. 253: E264-E270.
  48. Kozak, L.P. 2010. Brown fat and the myth of diet-induced thermogenesis. Cell Metab. 11: 263-267.
  49. Rothwell, N.J. & M.J. Stock. 1979. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281: 31-35.
  50. Feldmann, H.M., V. Golozoubova, B. Cannon & J. Neder- gaard. 2009. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9: 203-209.
  51. Feldmann, H.M., B. Cannon & J. Nedergaard. 2010. Brown adipose tissue is essential for diet-induced obesity: the ab- sence of UCP1 makes the obesity-resistant 129Sv mouse obesity-prone, due to lack of adaptive adrenergic thermoge- nesis. Obesity Reviews 11 (suppl 1): 92-92.
  52. Williams, G. & G.M. Kolodny. 2008. Method for decreasing uptake of 18F-FDG by hypermetabolic brown adipose tissue on PET. Am. J. Roentgenol. 190: 1406-1409.
  53. Cypess, A.M., S. Lehman, G. Williams, et al. 2009. Identi- fication and importance of brown adipose tissue in adult humans. N. Eng. J. Med. 360: 1509-1517.
  54. Evans, K.D., T.A. Tulloss & N. Hall. 2007. 18FDG uptake in brown fat: potential for false positives. Radiol. Technol. 78: 361-366.
  55. Pfannenberg, C., M.K. Werner, S. Ripkens, et al. 2010. Im- pact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59: 1789-1793.
  56. Yoneshiro, T., S. Aita, M. Matsushita, et al. 2011. Pro- tective role of cold-activated brown adipose tissue against age-related accumulaton of body fat in healthy humans. Submitted.
  57. Rohles Jr., F.H. 1971. Thermal sensatiions of sedentary man in moderate temperatures. Human factors 13: 553-560.
  58. Cohade, C., K.A. Mourtzikos & R.L. Wahl. 2003. "USA- Fat": prevalence is related to ambient outdoor temperature- evaluation with 18F-FDG PET/CT. J. Nucl. Med. 44: 1267- 1270.
  59. Kim, S., B.R. Krynyckyi, J. Machac & C.K. Kim. 2008. Tem- poral relation between temperature change and FDG uptake in brown adipose tissue. Eur. J. Nucl. Med. Mol. Imaging 35: 984-989.
  60. Cheng, W.Y., Z.H. Zhu & M. Ouyang. 2009. [Patterns and characteristics of brown adipose tissue uptake of 18F-FDG positron emission tomograph/computed tomography imag- ing].
  61. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 31: 370-373.
  62. Zukotynski, K.A., F.H. Fahey, S. Laffin, et al. 2009. Constant ambient temperature of 24 degrees C significantly reduces FDG uptake by brown adipose tissue in children scanned during the winter. Eur. J. Nucl. Med. Mol. Imaging 36: 602- 606.
  63. Zukotynski, K.A., F.H. Fahey, S. Laffin, et al. 2010. Seasonal variation in the effect of constant ambient temperature of 24 degrees C in reducing FDG uptake by brown adipose tissue in children. Eur. J. Nucl. Med. Mol. Imaging 37: 1854-1860.
  64. Kang, B.S., D.S. Han, K.S. Paik, et al. 1970. Calorigenic ac- tion of norepinephrine in the Korean women divers. J. Appl. Physiol. 29: 6-9.
  65. Klingenspor, M., S. Klaus, H. Wiesinger & G. Heldmaier. 1989. Short photoperiod and cold activate brown fat lipopro- tein lipase in the Djungarian hamster. Am. J. Physiol. 257: R1123-R1127.
  66. Oppert, J.M., M.C. Vohl, M. Chagnon, et al. 1994. DNA polymorphism in the uncoupling protein (UCP) gene and human body fat. Int. J. Obes. Relat. Metab. Disord.
  67. Esterbauer, H., H. Oberkofler, Y. Liu, et al. 1998. Uncoupling protein-1 mRNA expression in obese human subjects: the role of sequence variations at the uncoupling protein-1 gene locus. J. Lipid Res. 39: 834-844.
  68. Dobert, N., C. Menzel, N. Hamscho, et al. 2004. Atypical thoracic and supraclavicular FDG-uptake in patients with Hodgkin's and non-Hodgkin's lymphoma. Q J. Nucl. Med. Mol. Imaging 48: 33-38.
  69. Pace, L., E. Nicolai, D. D'Amico, et al. 2010. Determinants of Physiologic (18)F-FDG Uptake in Brown Adipose Tissue in Sequential PET/CT Examinations. Mol. Imaging Biol.
  70. Golozoubova, V., B. Cannon & J. Nedergaard. 2006. UCP1 is essential for adaptive adrenergic nonshivering thermoge- nesis. Am. J. Physiol. 291: E350-E357.
  71. Erikson, H., J. Krog, K.L. Andersen & P.F. Scholander. 1956. The critical temperature in naked man. Acta Physiol. Scand. 37: 35-39.
  72. Gagge, A.P., A.J. Stolwijk & J.D. Hardy. 1967. Comfort and thermal sensatiions and associated physiological responses at various ambient temperatures. Environm. Res. 1: 1-20.
  73. Farevik, H., D. Markussen, G.E. Ogland & R.E. Reinertsen. 2001. The thermoneutral zone when wearing airrew protec- tive clothing. J. Therm. Biol. 26:
  74. Dauncey, M.J. 1981. Influence of mild cold on 24 h energy expenditure, resting metabolism and diet-induced thermo- genesis. Br. J. Nutr. 45: 257-267.
  75. Yoneshiro, T., S. Aita, M. Matsushita, et al. 2010. Brown adi- pose tissue, whole-body energy expenditure, and thermoge- nesis in healthy adult men. Obesity (Silver Spring). Advance online publication. doi: 10.1038/oby.2010.105.
  76. Mitchell, J.R.D., A. Jacobsson, T.G. Kirchgessner, et al. 1992. Regulation of expression of the lipoprotein lipase gene in brown adipose tissue. Am. J. Physiol. 263: E500- E506.
  77. Radomski, M.W. & T. Orme. 1971. Response of lipoprotein lipase in various tissues to cold exposure. Am. J. Physiol. 220: 1852-1856.
  78. Carneheim, C.M.H., J. Nedergaard & B. Cannon. 1988. Cold-induced ␤-adrenergic recruitment of lipoprotein li- pase in brown fat is due to increased transcription. Am. J. Physiol. 254: E155-E161.
  79. Carneheim, C.M.H., B. Cannon & J. Nedergaard. 1989. Rare fatty acids in brown fat are substrates for thermogenesis during arousal from hibernation. Am. J. Physiol. 256: R146- R154.
  80. Ocloo, A., I.G. Shabalina, J. Nedergaard & M.D. Brand. 2007. Cold-induced alterations of phospholipid fatty acyl composition in brown adipose tissue mitochondria are independent of uncoupling protein-1. Am. J Physiol. Integr. Comp. Physiol. 293: R1086-R1093.
  81. Shabalina, I.G., A. Jacobsson, B. Cannon & J. Nedergaard. 2004. Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids. J. Biol. Chem. 279: 38236-38248.
  82. Hori, K., T. Ishigaki, K. Koyama, et al. 1998. Adaptive changes in the thermogenesis of rats by cold acclimation and deac- climation. Jpn. J. Physiol 48: 505-508.
  83. Meyer, C.W., M. Willershäuser, M. Jastroch, et al. 2010. Adaptive thermogenesis and thermal conductance in wild- type and UCP1-KO mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299: R1396-R1406.
  84. Skarulis, M.C., F.S. Celi, E. Mueller, et al. 2010. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J. Clin. Endocrinol. Metab. 95: 256-262.
  85. Sacks, H.S., J.N. Fain, B. Holman, et al. 2009. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat function- ing as brown fat. J. Clin. Endocrinol. Metab. 94: 3611-3615.
  86. Timmons, J.A. & B.K. Pedersen. 2009. The importance of brown adipose tissue. N. Engl. J. Med. 361: 415-416.
  87. Enerbäck, S., A. Jacobsson, E.M. Simpson, et al. 1997. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387: 90-94.
  88. Kontani, Y., Y. Wang, K. Kimura, et al. 2005. UCP1 defi- ciency increases susceptibility to diet-induced obesity with age. Aging Cell 4: 147-155.
  89. Lean, M.E.J., W.P.T. James, G. Jennings & P. Trayhurn. 1986. Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin. Sci. 71: 291-297.
  90. Chiba, S., I. Katsuragi, T. Simada, et al. 2006. Evaluation of human brown adipose tissue using positron emission tomography, computerised tomography and histochemical studies in association with body mass index, visceral fat accumulation and insulin resistance. Obes. Rev. 7(Suppl. 2): 87-87.
  91. Cohade, C., M. Osman, H.K. Pannu & R.L. Wahl. 2003. Uptake in supraclavicular area fat ("USA-Fat"): description on 18F-FDG PET/CT. J. Nucl. Med. 44: 170-176.
  92. Yeung, H.W., R.K. Grewal, M. Gonen, et al. 2003. Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J. Nucl. Med. 44: 1789- 1796.
  93. Truong, M.T., J.J. Erasmus, R.F. Munden, et al. 2004. Focal FDG uptake in mediastinal brown fat mimicking malig- nancy: a potential pitfall resolved on PET/CT. AJR Am. J. Roentgenol 183: 1127-1132.
  94. Stefan, N., C. Pfannenberg & H.U. Häring. 2009. The im- portance of brown adipose tissue. N. Engl. J. Med. 361: 416- 417.
  95. Au-Yong, I.T., N. Thorn, R. Ganatra, et al. 2009. Brown adipose tissue and seasonal variation in humans. Diabetes 58: 2583-2587.
  96. Garcia, C.A., D. Van Nostrand, F. Atkins, et al. 2006. Reduc- tion of brown fat 2-deoxy-2-[F-18]fluoro-D-glucose uptake by controlling environmental temperature prior to positron emission tomography scan. Mol. Imaging Biol. 8: 24- 29.
  97. Christensen, C.R., P.B. Clark & K.A. Morton. 2006. Reversal of hypermetabolic brown adipose tissue in F-18 FDG PET imaging. Clin. Nucl. Med. 31: 193-196.
  98. Baba, S., H.A. Jacene, J.M. Engles, J.M., et al. 2010. CT Hounsfield units of brown adipose tissue increase with ac- tivation: preclinical and clinical studies. J. Nucl. Med. 51: 246-250.
  99. Hu, H.H., S.A. Chung, K.S. Nayak, et al. 2010. Differential CT attenuation of metabolically active and inactive adipose tissues-preliminary findings. J. Comput. Assist. Tomogr. In press.
  100. Emorine, L., N. Blin & A.D. Strosberg. 1994. The human beta 3-adrenoceptor: the search for a physiological function. Trends Pharmacol. Sci. 15: 3-7.
  101. Janský, L., R. Bartünková & E. Zeisberger. 1967. Acclima- tion of the white rat to cold: noradrenaline thermogenesis. Physiol. Bohemoslov. 16: 366-372.
  102. Kreider, M.B. 1972. Stimulus for metabolic acclimation to cold: intensity versus duration. In "International symposium on environmental physiology: Bioenergetics (Smith, R. Em., J.P. Hannon, J.L. Shields & B.A. Horwitz, eds.). FASEB.
  103. Heldmaier, G. 1975. The effect of short daily cold exposure on development of brown adipose tissue in mice. J. Comp. Physiol. 98: 161-168.
  104. Wiesinger, H., S. Klaus, G. Heldmaier, et al. 1990. Increased nonshivering thermogenesis, brown fat cytochrome-c oxi- dase activity, GDP binding, and uncoupling protein mRNA levels after short daily cold exposure of Phodopus sungorus. Can. J. Physiol. Pharmacol. 68: 195-200.
  105. Cannon, B. & J. Nedergaard. 2010. Thyroid hormones: ig- niting brown fat via the brain. Nat. Med. 16: 965-967.
  106. L ópez, M., L. Varela, M.J. Vázquez, et al. 2010. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16 1001-1008.