Toward regenerating a human thumb in situ (original) (raw)

2009, Tissue engineering. Part A

Regenerative technology promises to alleviate the problem of limited donor supply for bone or organ transplants. Most expensive and time consuming is cell expansion in laboratories. We propose a method of magnetically enriched osteoprogenitor stem cells, dispersed in self-assembling hydrogels and applied onto new ultra-high resolution, jet-based, three-dimensional printing of living human bone in a single-step for in situ bone regeneration. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were enriched with CD 117+ cells, dispersed in different collagen I and RAD 16I hydrogel mixes, and applied onto three-dimensional printed btricalcium phosphate=poly(lactic-co-glycolic acid) scaffolds, printed from ultra-high-resolution volumetric CT images of a human thumb. Constructs were directly implanted subcutaneously into nude mice for 6 weeks. In vivo radiographic volumetric CT scanning and histological evaluations were performed at 1, 2, 4, and 6 weeks, and expression of bone-spec...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact