High-throughput screening for enhanced protein stability (original) (raw)

2006, Current Opinion in Biotechnology

High thermostability of proteins is a prerequisite for their implementation in biocatalytic processes and in the evolution of new functions. Various protein engineering methods have been applied to the evolution of increased thermostability, including the use of combinatorial design where a diverse library of proteins is generated and screened for variants with increased stability. Current trends are toward the use of data-driven methods that reduce the library size by using available data to choose areas of the protein to target, without specifying the precise changes. For example, the half-lives of subtilisin and a Bacillus subtilis lipase were increased 1500-fold and 300-fold, respectively, using a crystal structure to guide mutagenesis choices. Sequence homology based methods have also produced libraries where 50% of the variants have improved thermostability. Moreover, advances in the high-throughput measurement of denaturation curves and the application of selection methods to thermostability evolution have enabled the screening of larger libraries. The combination of these methods will lead to the rapid improvement of protein stability for biotechnological purposes.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.