Impacts of climate changes on crop physiology and food quality (original) (raw)
Abstract
Carbon emissions related to human activities have been significantly contributing to the elevation of atmospheric [CO 2 ] and temperature. More recently, carbon emissions have greatly accelerated, thus much stronger effects on crops are expected. Here, we revise literature data concerning the physiological effects of CO 2 enrichment and temperature rise on crop species. We discuss the main advantages and limitations of the most used CO 2 -enrichment technologies, the Open-Top Chambers (OTCs) and the Free-Air Carbon Enrichment (FACE). Within the conditions expected for the next few years, the physiological responses of crops suggest that they will grow faster, with slight changes in development, such as flowering and fruiting, depending on the species. There is growing evidence suggesting that C 3 crops are likely to produce more harvestable products and that both C 3 and C 4 crops are likely to use less water with rising atmospheric [CO 2 ] in the absence of stressful conditions. However, the beneficial direct impact of elevated [CO 2 ] on crop yield can be offset by other effects of climate change, such as elevated temperatures and altered patterns of precipitation. Changes in food quality in a warmer, high-CO 2 world are to be expected, e.g., decreased protein and mineral nutrient concentrations, as well as altered lipid composition. We point out that studies related to changes in crop yield and food quality as a consequence of global climatic changes should be priority areas for further studies, particularly because they will be increasingly associated with food security.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (93)
- Ainsworth, E. A., Beier, C., Calfapietra, C., Ceulemans, R., Durand-Tardif, M., Farquhar, G. D., et al. (2008). Next generation of elevated [CO 2 ] experiments with crops: A critical investment for feeding the future world. Plant, Cell and Environment, 31, 1317-1324.
- Ainsworth, E. A., Davey, P. A., Bernacchi, C. J., Dermody, O. C., Heaton, E. A., Moore, D. J., et al. (2002). A metaanalysis of elevated [CO 2 ] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology, 8, 695-709.
- Ainsworth, E. A., Leakey, A. D. B., Ort, D. R., & Long, S. P. (2008). FACE-ing the facts: Inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO 2 ] impacts on crop yield and food supply. New Phytologist, 179, 5-9.
- Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free air CO 2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2 . New Phytologist, 165, 351-372.
- Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO 2 ]: Mechanisms and environmental interactions. Plant, Cell and Environment, 30, 258-270.
- Ainsworth, E. A., Rogers, A., & Leakey, A. D. B. (2008). Targets for crop biotechnology in a future high-CO 2 and high-O 3 world. Plant Physiology, 147, 13-19.
- Arp, W. J. (1991). Effects of source-sink relations on photosynthetic acclimation to elevated CO 2 . Plant, Cell and Environment, 14, 869-875.
- Bannayan, M., Tojo Soler, C. M., Garcia y Garcia, A., Guerra, L. C., & Hoogenboom, G. (2009). Interactive effects of elevated [CO 2 ] and temperature on growth and development of a short-and long-season peanut cultivar. Climatic Change, 93, 389-406.
- Barnabás, B., Järgen, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31, 11-38.
- Behboudian, M. H., & Tod, C. (1995). Postharvest attributes of 'Virosa' tomato fruit produced in an enriched carbon dioxide environment. HortScience, 30, 490-491.
- Bengtsson, M., Shen, Y., & Oki, T. (2006). A SRES-based gridded global population dataset for 1990-2100. Population and Environment, 28, 113-131.
- Bloom, A. J. (2006). Rising carbon dioxide concentrations and the future of crop production. Journal of the Science of Food and Agriculture, 86, 1289-1291.
- Challinor, A. J., Ewert, F., Arnold, S., Simelton, E., & Fraser, E. (2009). Crops and climate change: Progress, trends, and challenges in simulating impacts and informing adaptation. Journal of Experimental Botany. doi:10.1093/jxb/erp062.
- Challinor, A. J., & Wheeler, T. R. (2008a). Use of a crop model ensemble to quantify CO 2 stimulation of water-stressed and well-watered crops. Agricultural and Forest Meteorology, 148, 1062-1077.
- Challinor, A. J., & Wheeler, T. R. (2008b). Crop yield reduction in the tropics under climate change: Processes and uncertainties. Agricultural and Forest Meteorology, 148, 343-356.
- Craufurd, P. Q., & Wheeler, T. R. (2009). Climate change and the flowering time of annual crops. Journal of Experimental Botany, 60, 2529-2539.
- Curtis, P. S., & Wang, X. (1998). A meta-analysis of elevated CO 2 effects on woody plant mass, form, and physiology. Oecologia, 113, 299-313.
- De Souza, A. P., Gaspar, M., Silva, E. A., Ulian, E. C., Waclawovsky, A. J., Nishiyama, M. Y. Jr.,, et al. (2008). Elevated CO 2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant, Cell and Environment, 31, 1116-1127.
- Demmers-Derks, H. H., Mitchell, R. A. C., Mitchell, V. J., & Lawlor, D. W. (1998). Response of sugar beet (Beta vulgaris L.) yield and biochemical composition to elevated CO 2 and temperature at two nitrogen applications. Plant, Cell and Environment, 21, 829-836.
- Drake, B. G., Azcon-Bieto, J., Berry, J., Bunce, J., Dijkstra, P., Farrar, J., et al. (1999). Does elevated atmospheric CO 2 concentration inhibit mitochondrial respiration in green plants? Plant, Cell and Environment, 22, 649-657.
- Drake, B. G., Gonzalez-Meler, M. A., & Long, S. P. (1997). More efficient plants: A consequence of rising atmospheric CO 2 ? Annual Review of Plant Physiology and Plant Molecular Biology, 48, 609-639.
- Easterling, W. E., Aggarwal, P. K., Batima, P., Brander, L. M., Erda, L., Howden, S. M., et al. (2007). Food, fibre and forest products. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change (pp. 273-313). Cambridge: Cambridge University Press.
- Ellsworth, D. S., Reich, P. B., Naumburg, E. S., Koch, G. W., Kubiske, M. E., & Smith, S. D. (2004). Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO 2 across four free-air CO 2 enrichment experiments in forest, grassland and desert. Global Change Biology, 10, 2121-2138.
- Erda, L., Wei, X., Hui, J., Yinlong, X., Yue, L., Liping, B., et al. (2005). Climate change impacts on crop yield and quality with CO 2 fertilization in China. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 2149-2154.
- Fangmeier, A., De Temmerman, L., Mortensen, L., Kemp, K., Burke, J., Mitchell, R., et al. (1999). Effects on nutrients and on grain quality in spring wheat crops grown under elevated CO 2 concentrations and stress conditions in the European, multiple-site experiment ''ESPACE-wheat''. European Journal of Agronomy, 10, 215-229.
- Fuhrer, J. (2003). Agroecosystem responses to combinations of elevated CO 2 , ozone, and global climate change. Agriculture, Ecosystems and Environment, 97, 1-20.
- Gifford, R. M. (2003). Plant respiration in productivity models: Conceptualisation, representation and issues for global terrestrial carbon-cycle research. Functional Plant Biology, 30, 171-186.
- Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. I. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany. doi:10.1093/jxb/erp080.
- Hay, R., & Porter, J. (2006). The physiology of crop yield (2nd ed.). Oxford: Blackwell.
- Hesketh, J., & Hellmers, H. (1973). Floral initiation in four plant species growing in CO 2 -enriched air. Environmental Control in Biology, 11, 51-53.
- Högy, P., & Fangmeier, A. (2008). Effects of elevated atmospheric CO 2 on grain quality of wheat. Journal of Cereal Science, 48, 580-591.
- Holtum, J. A. M., & Winter, K. (2003). Photosynthetic CO 2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO 2 . Planta, 218, 152-158.
- Idso, S. B., & Idso, K. E. (2001). Effects of atmospheric CO 2 enrichment on plant constituents related to animal and human health. Environmental and Experimental Botany, 45, 179-199.
- Ingram, J. S. I., Gregory, P. J., & Izac, A.-M. (2008). The role of agronomic research in climate change and food security policy. Agriculture, Ecosystems and Environment, 126, 4-12.
- IPCC (2007). Climate change 2007: The physical science basis. Summary for policymakers. Paris: WMO/UNEP.
- Izquierdo, N., Aguirrezábal, L., Andrade, F., & Pereyra, V. (2002). Night temperature affects fatty acid composition in sunflower oil depending on the hybrid and the phenological stage. Field Crops Research, 77, 115-126.
- Jablonski, L. M., Xianzhong, W., & Curtis, P. S. (2002). Plant reproduction under elevated CO 2 conditions: A meta-analysis of reports on 79 crop and wild species. New Phytologist, 156, 9-26.
- Kimball, B. A., & Bernacchi, C. J. (2006). Evapotranspiration, canopy temperature, and plant water relations. In J. Nösberger, S. P. Long, R. J. Norby, M. Stitt, G. R. Hendrey, & H. Blum (Eds.), Managed ecosystems and CO 2 (pp. 311-324). Berlin: Springer-Verlag.
- Kimball, B. A., Idso, S. B., Johnson, S., & Rillig, M. T. (2007). Seventeen years of carbon dioxide enrichment of sour orange trees: Final results. Global Change Biology, 13, 2171-2183.
- Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., & Ort, D. R. (2009). Elevated CO 2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. Journal of Experimental Botany. doi:10.1093/jxb/ erp096.
- Leakey, A. D. B., Uribelarrea, M., Ainsworth, E. A., Naidu, S. L., Rogers, A., Ort, D. R., et al. (2006). Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO 2 concentration in the absence of drought. Plant Physiology, 140, 779-790.
- Leakey, A. D. B., Xu, F., Gillespie, K. M., McGrath, J. M., Ainsworth, E. A., & Ort, D. R. (2009). The genomic basis for stimulated respiratory carbon loss to the atmosphere by plants growing under elevated [CO 2 ]. Proceedings of the National Academy of Sciences, USA, 106, 3597-3602.
- Loladze, I. (2002). Rising atmospheric CO 2 and human nutrition: Toward globally imbalanced plant stoichiometry? Trends in Ecology & Evolution, 17, 457-461.
- Long, S. P. (1991). Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO 2 concentrations: Has its importance been underestimated? Plant, Cell and Environment, 14, 729-739.
- Long, S. P., Ainsworth, E. A., Leakey, A. D. B., & Ort, D. R. (2006). Food for thought: Lower-than-expected crop yield stimulation with rising CO 2 conditions. Science, 312, 1918-1921.
- Long, S. P., Ainsworth, E. A., Rogers, A., & Ort, D. R. (2004). Rising atmospheric carbon dioxide: Plants FACE the future. Annual Review of Plant Biology, 55, 591-628.
- Manderscheid, R., Bender, J., Jager, H.-J., & Weigel, H. J. (1995). Effects of season long CO 2 enrichment on cereals. II. Nutrient concentrations and grain quality. Agriculture, Ecosystems and Environment, 54, 175-185.
- Maroco, J. P., Edwards, G. E., & Ku, M. S. B. (1999). Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta, 210, 115-125.
- Matsui, T., Namuco, O. S., Ziska, L. H., & Horie, T. (1997). Effects of high temperature and CO 2 concentration on spikelet sterility in indica rice. Field Crops Research, 51, 213-219.
- McLeod, A., & Long, S. P. (1999). Free air carbon dioxide enrichment (FACE) in global change research: A review. Advances in Ecological Research, 28, 1-55.
- Miglietta, F., Magliulo, V., Bindi, M., Cerio, L., Vaccari, F. P., Loduca, V., et al. (1998). Free air CO 2 enrichment of potato (Solanum tuberosum L.): Development, growth and yield. Global Change Biology, 4, 163-172.
- Miglietta, F., & Raschi, A. (1993). Studying the effect of elevated CO 2 in the open in a naturally enriched environment in central Italy. Vegetatio, 104, 391-400.
- Milchunas, D. G., Mosier, A. R., Morgan, J. A., LeCain, D. R., King, J. Y., & Nelson, J. A. (2005). Elevated CO 2 and defoliation effects on a shortgrass steppe: Forage quality versus quantity for ruminants. Agriculture, Ecosystems and Environment, 111, 166-184.
- Miraglia, M., Marvin, H. J. P., Kleter, G. A., Battilani, P., Brera, C., Coni, E., et al. (2009). Climate change and food safety: An emerging issue with special focus on Europe. Food and Chemical Toxicology, 47, 1009-1021.
- Mitchell, R. A. C., Mitchell, V., Driscoll, S. P., Franklin, J., & Lawlor, D. W. (1993). Effects of increased CO 2 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. Plant, Cell and Environment, 16, 521-529.
- Morison, J. I. L., & Lawlor, D. W. (1999). Interactions between increasing CO 2 concentration and temperature on plant growth. Plant, Cell and Environment, 22, 659-682.
- Pal, M., Karthikeyapandian, V., Jain, V., Srivastava, A. C., Raj, A., & Sengupta, U. K. (2004). Biomass production and nutritional levels of berseem (Trifolium alexandrium) grown under elevated CO 2 . Agriculture, Ecosystems and Environment, 101, 31-38.
- Polley, H. W. (2002). Implications of atmospheric and climate change for crop yield. Crop Science, 42, 131-140.
- Porteaus, F., Hill, J., Ball, A. S., Pinter, P. J., Kimball, A., Wall, G. W., et al. (2009). Effect of free air carbon dioxide enrichment (FACE) on the chemical composition and nutritive value of wheat grain and straw. Animal Feed Science and Technology, 149, 322-332.
- Porter, J. R., & Semenov, M. A. (2005). Crop responses to climatic variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 2021-2035.
- Rengel, Z., Batten, G. D., & Crowley, D. E. (1999). Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Research, 60, 27-40.
- Rogers, H. H., Bingham, G. E., Cure, J. D., Smith, J. M., & Surano, K. A. (1983). Responses of selected plant species to elevated carbon dioxide in the field. Journal of Environmental Quality, 12, 569.
- Rogers, H. H., Cure, J. D., & Smith, J. M. (1986). Soybean growth and yield response to elevated carbon dioxide. Agriculture, Ecosystems and Environment, 16, 113-128.
- Ronchi, C. P., DaMatta, F. M., Batista, K. D., Moraes, G. A. B. K., Loureiro, M. E., & Ducatti, C. (2006). Growth and photosynthetic down-regulation in Coffea arabica in response to restricted root volume. Functional Plant Biology, 33, 1013-1023.
- Sage, R. F., Way, D. A., & Kubien, D. S. (2008). Rubisco, Rubisco activase, and global climate change. Journal of Experimental Botany, 59, 1581-1595.
- Sebastian, S. A., Kerr, P. S., Pearlstein, R. W., & Hitz, W. D. (2000). Soybean germplasm with novel genes for improved digestibility. In J. K. Drackely (Ed.), Soy in animal nutrition (pp. 56-74). Savory, IL: Federation of Animal Science Society.
- Seneweera, S. P., & Conroy, J. P. (1997). Growth, grain yield and quality of rice (Oryza sativa L.) in response to elevated CO 2 and phosphorus nutrition. Soil Science and Plant Nutrition, 43, 1131-1136.
- Socias, F. X., Medrano, H., & Sharkey, T. D. (1993). Feedback limitation of photosynthesis of Phaseolus vulgaris L. grown in elevated CO 2 . Plant, Cell and Environment, 16, 81-86.
- Springer, C. J., & Ward, J. K. (2007). Flowering time and elevated atmospheric CO 2 . New Phytologist, 176, 243-255.
- Stafford, N. (2008). The other greenhouse effects. Nature, 448, 526-528.
- Taiz, L., & Zeiger, E. (2006). Plant physiology (4th ed.). Sunderland: Sinauer Associates.
- Taub, D., Miller, B., & Allen, H. (2008). Effects of elevated CO 2 on the protein concentration of food crops: A meta-analysis. Global Change Biology, 14, 565-575.
- Terao, T., Miura, S., Yanagihara, T., Hirose, T., Nagata, K., Tabuchi, H., et al. (2005). Influence of free-air CO 2 enrichment (FACE) on the eating quality of rice. Journal of the Science of Food and Agriculture, 85, 1861-1868.
- Thomas, J. M. G., Boote, K. J., Allen, L. H., Gallo-Meagher, M., & Davis, J. M. (2003). Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Science, 43, 1548-1557.
- Thomas, J. M. G., Prasad, P. V. V., Boote, K. J., & Allen, L. H. (2009). Seed composition, seedling emergence and early seedling vigour of red kidney bean seed produced at elevated temperature and carbon dioxide. Journal of Agronomy & Crop Science, 195, 148-156.
- Tubiello, F. N., Amthor, J. S., Boote, K. J., Donatelli, M., Easterling, W., Fischer, G., et al. (2007). Crop response to elevated CO 2 and world food supply. European Journal of Agronomy, 26, 215-233.
- Tubiello, T. N., & Fischer, G. (2007). Reducing climate change impacts on agriculture: Global and regional effects of mitigation 2000-2080. Technological Forecasting & Social Change, 74, 1030-1056.
- Tubiello, F. N., Soussana, J.-F., & Howden, S. M. (2007). Crop and pasture response to climate change. Proceedings of the National Academy of Sciences, USA, 104, 19686-19690.
- Vara Prasad, P. V., Craufurd, P. Q., Summerfield, R. J., & Wheeler, T. R. (2000). Effects of short-episodes of heat stress on flower production and fruit-set of groundnut (Arachis hypogaea L.). Journal of Experimental Botany, 51, 777-784.
- von Caemmerer, S., & Furbank, R. T. (2003). The C 4 pathway: An efficient CO 2 pump. Photosynthesis Research, 77, 191-207.
- Vu, J. C. V., & Allen, L. H. (2009). Growth at elevated CO 2 delays the adverse effects of drought stress on leaf photosynthesis of the C 4 sugarcane. Journal of Plant Physiology, 166, 107-116.
- Wallwork, M. A. B., Jenner, C. F., Logue, S. J., & Sedgley, M. (1998). Effect of high temperature during grain-filing on the structure of developing and malted barley grains. Annals of Botany, 82, 587-599.
- Wand, S. J. E., Midgley, G. F., Jones, M. H., & Curtis, P. S. (1999). Responses of wild C 4 and C 3 grass (Poaceae) species to elevated atmospheric CO 2 concentration: A meta-analytic test of current theories and perceptions. Global Change Biology, 5, 723-741.
- Weigel, H. J., & Manderscheid, R. (2005). CO 2 enrichment effects on forage and grain nitrogen content of pasture and cereal plants. Journal of Crop Improvement, 13, 73-89.
- Williams, M., Shewry, P. R., Lawlor, D. W., & Harwood, J. L. (1995). The effects of elevated temperature and atmospheric carbon dioxide concentration on the quality of grain lipids in wheat (Triticum aestivum L.) grown at two levels of nitrogen application. Plant, Cell and Environment, 18, 999-1009.
- Wolf, R. B., Cavins, J. F., Kleiman, R., & L. T. (1982). Effect of temperature on soybean seed constituents: Oil, protein, moisture, fatty acids, amino acids and sugars. Journal of the American Oil Chemists' Society, 59, 230-232.
- Yang, L., Wang, Y., Dong, G., Gu, H., Huang, J., Zhu, J., et al. (2007). The impact of free- air CO 2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Research, 102, 128-140.
- Yang, L., Wang, H., Liu, Y., Zhu, J., Huang, J., Liu, G., et al. (2009). Yield formation of CO 2 -enriched inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field condition in a warm sub-tropical climate. Agriculture, Ecosystems and Environment, 129, 193-200.
- Ziska, L. H., & Bunce, J. A. (1997). Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C 4 crops and weeds. Photosynthesis Research, 54, 199-208.
- Ziska, L. H., & Bunce, J. A. (2006). Plant responses to rising atmospheric carbon dioxide. In J. I. L. Morison & M. D. Morecroft (Eds.), Plant growth and climate change (pp. 17-47). Oxford: Blackwell.
- Ziska, L. H., & Bunce, J. A. (2007). Predicting the impact of changing CO 2 on crop yields: Some thoughts on food. New Phytologist, 175, 607-618.
- Ziska, L. H., Manalo, P. A., & Ordonez, R. (1996). Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO 2 : Evaluation of 17 cultivars. Journal of Experimental Botany, 47, 1353-1359.
- Ziska, L. H., Namuco, O., Moya, T., & Quilang, J. (1997). Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agronomy Journal, 89, 45-53.