A Prostate-Specific Membrane Antigen-Targeted Monoclonal Antibody-Chemotherapeutic Conjugate Designed for the Treatment of Prostate Cancer (original) (raw)

Development of 5D3-DM1: A Novel Anti-Prostate-Specific Membrane Antigen Antibody-Drug Conjugate for PSMA-Positive Prostate Cancer Therapy

Molecular Pharmaceutics, 2020

Prostate cancer (PC) is a potentially high-risk disease and the most common cancer in American men. It is a leading cause of cancer-related deaths in men in the US, second only to lung and bronchus cancer. Advanced and metastatic PC is initially treated with androgen deprivation therapy (ADT), but nearly all cases eventually progress to castrate-resistant prostate cancer (CRPC). CRPC is incurable in the metastatic stage but can be slowed by some conventional chemotherapeutics and second-generation ADT, such as enzalutamide and abiraterone. Therefore, novel therapeutic strategies are urgently needed. Prostate-specific membrane antigen (PSMA) is overexpressed in almost all aggressive PCs. PSMA is widely used as a target for PC imaging and drug delivery. Anti-PSMA monoclonal antibodies (mAbs) have been developed as bioligands for diagnostic imaging and targeted PC therapy. However, these mAbs are successfully used in PC imaging and only a few have gone beyond phase-I for targeted therapy. The 5D3 mAb is a novel, high-affinity, and fast-internalizing anti-PSMA antibody. Importantly, 5D3 mAb demonstrates a unique pattern of cellular localization to the centrosome after internalization in PSMA(+) PC3-PIP cells. These characteristics make 5D3 mAb an ideal bioligand to deliver tubulin inhibitors, such as mertansine, to the cell centrosome, leading to mitotic arrest and elimination of dividing PC cells. We have successfully developed a 5D3 mAb-and mertansine (DM1)-based antibody-drug conjugate (ADC) and evaluated it in vitro for binding affinity, internalization, and cytotoxicity. The in vivo therapeutic efficacy of 5D3-DM1 ADC was evaluated in PSMA(+) PC3-PIP and PSMA(-) PC3-Flu mouse models of human PC. This therapeutic study has revealed that this new anti-PSMA ADC can successfully control the growth of PSMA(+) tumors without inducing systemic toxicity.

Small Molecule-Based Prodrug Targeting Prostate Specific Membrane Antigen for the Treatment of Prostate Cancer

Cancers, 2021

Metastatic castration-resistant prostate cancer poses a serious clinical problem with poor outcomes and remains a deadly disease. New targeted treatment options are urgently needed. PSMA is highly expressed in prostate cancer and has been an attractive biomarker for the treatment of prostate cancer. In this study, we explored the feasibility of targeted delivery of an antimitotic drug, monomethyl auristatin E (MMAE), to tumor tissue using a small-molecule based PSMA lig-and. With the aid of Cy5.5, we found that a cleavable linker is vital for the antitumor activity of the ligand–drug conjugate and have developed a new PSMA-targeting prodrug, PSMA-1-VcMMAE. In in vitro studies, PSMA-1-VcMMAE was 48-fold more potent in killing PSMA-positive PC3pip cells than killing PSMA-negative PC3flu cells. In in vivo studies, PSMA-1-VcMMAE significantly inhibited tumor growth leading to prolonged animal survival in different animal models, including metastatic prostate cancer models. Compared to a...

In Vitro and In Vivo Responses of Advanced Prostate Tumors to PSMA ADC, an Auristatin-Conjugated Antibody to Prostate-Specific Membrane Antigen

Molecular Cancer Therapeutics, 2011

Prostate-specific membrane antigen (PSMA) is a membrane protein that is overexpressed manifold in prostate cancer and provides an attractive target for therapy. PSMA ADC is an antibody-drug conjugate (ADC) that consists of a fully human anti-PSMA monoclonal antibody conjugated to monomethylauristatin E through a valine-citrulline linker. In this study, the antitumor activity of PSMA ADC was evaluated against a panel of prostate cancer cell lines in vitro and in a novel in vivo model of taxane-refractory human prostate cancer. In vitro cell killing was efficient for cells with abundant PSMA expression (>10 5 molecules/cell; IC 50 0.022 nmol/L) and 1,000-fold less efficient for cells with undetectable PSMA (IC 50 > 30 nmol/L). Intermediate potency (IC 50 ¼ 0.80 nmol/L) was observed for cells with approximately 10 4 molecules of PSMA per cell, indicating a threshold PSMA level for selective cell killing. Similar in vitro activity was observed against androgen-dependent and-independent cells that had abundant PSMA expression. In vitro activity of PSMA ADC was also dependent on internalization and proper N-glycosylation/folding of PSMA. In contrast, less potent and nonselective cytotoxic activity was observed for a control ADC, free monomethylauristatin E, and other microtubule inhibitors. PSMA ADC showed high in vivo activity in treating xenograft tumors that had progressed following an initial course of docetaxel therapy, including tumors that were large (>700 mm 3) before treatment with PSMA ADC. This study defines determinants of antitumor activity of a novel ADC. The findings here support the clinical evaluation of this agent in advanced prostate cancer. Mol Cancer Ther; 10(9); 1728-39. Ó2011 AACR.

Prostate-specific Membrane Antigen Based Antibody-drug Conjugates for Metastatic Castration-resistance Prostate Cancer

Cureus, 2020

Cancer cells can be selectively targeted by identifying and developing antibodies to specific antigens present on the cancer cell surface. Cytotoxic agents can be conjugated to these antibodies that bind to these cell surface antigens in order to significantly increase the therapeutic index of whichever cytotoxic agent is utilized. This approach of conjugating the cytotoxic drugs to antibodies to target specific surface antigens enhances the anti-tumor activity of antibodies and improves the tumor-to-normal tissue selectivity of chemotherapy. Critical parameters in the development of these antibody-drug conjugates include: 1) selection of most appropriate antigen, 2) the ability of an antibody to be internalized after binding to the antigen, 3) cytotoxic drug potency and 4) stability of the antibody-drug conjugate. For prostate cancer, prostate-specific membrane antigen (PSMA, also known as folate hydrolase-1) is the most validated theragnostic target to date. PSMA is overexpressed on the prostate cancer cell surface, which makes it an even better target for selective drug delivery through conjugated antibodies. Here, we review the PSMA-based antibody-drug conjugates for metastatic castration-resistance prostate cancer (mCRPC).

Prostate-Specific Membrane Antigen-Based Therapeutics

Advances in Urology, 2012

Prostate cancer (PC) is the most common noncutaneous malignancy affecting men in the US, leading to significant morbidity and mortality. While significant therapeutic advances have been made, available systemic therapeutic options are lacking. Prostate-specific membrane antigen (PSMA) is a highly-restricted prostate cell-surface antigen that may be targeted. While initial anti-PSMA monoclonal antibodies were suboptimal, the development of monoclonal antibodies such as J591 which are highly specific for the external domain of PSMA has allowed targeting of viable, intact prostate cancer cells. Radiolabeled J591 has demonstrated accurate and selective tumor targeting, safety, and efficacy. Ongoing studies using anti-PSMA radioimmunotherapy with177Lu-J591 seek to improve the therapeutic profile, select optimal candidates with biomarkers, combine with chemotherapy, and prevent or delay the onset of metastatic disease for men with biochemical relapse. Anti-PSMA monoclonal antibody-drug co...

Clinical Trials of Cancer Therapies Targeting Prostate-Specific Membrane Antigen

Reviews on Recent Clinical Trials, 2007

Prostate cancer is the most common non-cutaneous cancer of men in the United States and represents their second-leading cause of cancer-related death. Metastatic disease is largely resistant to conventional chemotherapies, and targeted therapies are urgently needed. Prostate-specific membrane antigen (PSMA) is a prototypical cell-surface marker of prostate cancer. PSMA is an integral, nonshed, type 2 membrane protein with abundant and nearly universal expression in prostate carcinoma, but has limited extra-prostatic expression. In addition, PSMA is expressed in the neovasculature of other solid tumors. These findings have spurred development of PSMA-targeted therapies for cancer, and first-generation products have entered clinical testing. Vaccine approaches have included recombinant protein, nucleic acid and cell-based strategies, and anti-PSMA immune responses have been demonstrated in the absence of significant toxicity. Therapy with drug-conjugated and radiolabeled antibodies has yielded objective clinical responses as measured by reductions in serum prostate-specific antigen and/or imageable tumor volume. However, responses were observed in a minor fraction of patients and at doses near the maximum tolerated dose. Overall, these initial studies have provided measured proof of concept for PSMAbased therapies, and second-generation antibody and vaccine products may hold the key to exploit PSMA for molecularly targeted therapy of prostate and other cancers.

Antitumor Activity of MEDI3726 (ADCT-401), a Pyrrolobenzodiazepine Antibody-drug Conjugate Targeting PSMA, in Pre-clinical Models of Prostate Cancer

Molecular cancer therapeutics, 2018

Prostate specific membrane antigen (PSMA) is a membrane bound glutamate carboxypeptidase that is highly expressed in nearly all prostate cancers with the highest expression in metastatic castration-resistant prostate cancer (mCRPC). The prevalence of increased surface expression and constitutive internalization of PSMA make it an attractive target for an antibody-drug conjugate (ADC) approach to treating patients with mCRPC. MEDI3726 (previously known as ADCT-401) is an ADC consisting of an engineered version of the anti-PSMA antibody J591 site-specifically conjugated to the pyrrolobenzodiazepine (PBD) dimer tesirine. MEDI3726 specifically binds the extracellular domain of PSMA and, once internalized, releases the PBD dimer to crosslink DNA and trigger cell death. In vitro, MEDI3726 demonstrated potent and specific cytotoxicity in a panel of PSMA-positive prostate cancer cell lines, consistent with internalization and DNA interstrand crosslinking. In vivo, MEDI3726 showed robust ant...

Towards Personalized Treatment of Prostate Cancer: PSMA I&T, a Promising Prostate-Specific Membrane Antigen-Targeted Theranostic Agent

Theranostics, 2016

Prostate-specific membrane antigen (PSMA) is a well-established target for nuclear imaging and therapy of prostate cancer (PCa). Radiolabeled small-molecule PSMA inhibitors are excellent candidates for PCa theranostics-they rapidly and efficiently localize in tumor lesions. However, high tracer uptake in kidneys and salivary glands are major concerns for therapeutic applications. Here, we present the preclinical application of PSMA I&T, a DOTAGA-chelated urea-based PSMA inhibitor, for SPECT/CT imaging and radionuclide therapy of PCa. (111)In-PSMA I&T showed dose-dependent uptake in PSMA-expressing tumors, kidneys, spleen, adrenals, lungs and salivary glands. Coadministration of 2-(phosphonomethyl)pentane-1,5-dioic acid (2-PMPA) efficiently reduced PSMA-mediated renal uptake of (111)In-PSMA I&T, with the highest tumor/kidney radioactivity ratios being obtained using a dose of 50 nmol 2-PMPA. SPECT/CT clearly visualized subcutaneous tumors and sub-millimeter intraperitoneal metastases...

Towards Personalized Treatment of Prostate Cancer: PSMA I&T, a Promising Prostate-Specific Membrane Antigen-Targeted Theranostic Agent

Theranostics, 2016

Prostate-specific membrane antigen (PSMA) is a well-established target for nuclear imaging and therapy of prostate cancer (PCa). Radiolabeled small-molecule PSMA inhibitors are excellent candidates for PCa theranostics-they rapidly and efficiently localize in tumor lesions. However, high tracer uptake in kidneys and salivary glands are major concerns for therapeutic applications. Here, we present the preclinical application of PSMA I&T, a DOTAGA-chelated urea-based PSMA inhibitor, for SPECT/CT imaging and radionuclide therapy of PCa. 111 In-PSMA I&T showed dose-dependent uptake in PSMA-expressing tumors, kidneys, spleen, adrenals, lungs and salivary glands. Coadministration of 2-(phosphonomethyl)pentane-1,5-dioic acid (2-PMPA) efficiently reduced PSMA-mediated renal uptake of 111 In-PSMA I&T, with the highest tumor/kidney radioactivity ratios being obtained using a dose of 50 nmol 2-PMPA. SPECT/CT clearly visualized subcutaneous tumors and sub-millimeter intraperitoneal metastases; however, high renal and spleen uptake in control mice (no 2-PMPA) interfered with visualization of metastases in the vicinity of those organs. Coadministration of 2-PMPA increased the tumor-to-kidney absorbed dose ratio during 177 Lu-PSMA I&T radionuclide therapy. Hence, at equivalent absorbed dose to the tumor (36 Gy), coinjection of 2-PMPA decreased absorbed dose to the kidneys from 30 Gy to 12 Gy. Mice injected with 177 Lu-PSMA I&T only, showed signs of nephrotoxicity at 3 months after therapy, whereas mice injected with 177 Lu-PSMA I&T + 2-PMPA did not. These data indicate that PSMA I&T is a promising theranostic tool for PCa. PSMA-specific uptake in kidneys can be successfully tackled using blocking agents such as 2-PMPA.