Exploring the tumour environment: cancer-associated fibroblasts as targets in cancer therapy (original) (raw)
Related papers
Cancer Associated Fibroblasts Mediate Cancer Progression and Remodel the Tumouroid Stroma
2019
ObjectiveCancer associated fibroblasts (CAFs) are highly differentiated and heterogenous cancer stromal cells that promote tumour growth, angiogenesis and matrix remodelling.DesignWe utilised a novel 3D in vitro model of colorectal cancer, composed of a cancer mass and surrounding stromal compartment. We compared cancer invasion with an acellular stromal surround, a ‘healthy’ or normal cellular stroma and a cancerous stroma. For the cancerous stroma we incorporated six patient-derived CAF samples to study their differential effects on cancer growth, vascular network formation, and remodelling.ResultsCAFs enhanced the distance and surface area of the invasive cancer mass whilst inhibiting vascular-like network formation. These processes were driven by the upregulation of hepatocyte growth factor (HFG), metallopeptidase inhibitor 1 (TIMP1) and fibulin 5 (FBLN5).Remodelling appeared to occur through the process of disruption of complex networks and was associated with the up upregulati...
Cancer-associated Fibroblasts: Origins, Heterogeneity and Functions in Tumor Microenvironment
Current therapeutic strategies targeting cancer cells within solid tumors have displayed limited success owing to the presence of non-cancer components referred to as the tumor stroma within the tumor microenvironment (TM). These stromal cells, extracellular matrix and blood vessels influence cancer cell response to therapy and play key roles in tumor relapse and resistance. Of the stromal cells present in the TM, a lot of attention has been given to cancer-associated fibroblasts (CAFs) as they are the most abundant and are important in cancer initiation, progression and therapy resistance. In this updated review I emphasize the role of CAFs in the regulation of tumor cell behaviour and reveal how CAF-derived factors and signaling influence tumor cell heterogeneity and development of novel strategies to combat cancer. To investigate the expression of CAF markers in tumor tissues versus normal tissues, transcriptomic data from The Cancer Genome Atlas (TCGA) and the Gene Expression Pr...
Role of stromal fibroblasts in cancer: promoting or impeding?
Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, 2009
The basement membrane, immune cells, capillaries, fibroblasts and extracellular matrix (ECM) constitute the tumour stroma, commonly referred to as the 'reactive stroma'. The fibroblasts from the initial stages of a tumour, as the main constituents of the reactive stroma, present a different phenotype from the normal fibroblasts and play a crucial role in tumour progression. This review presents the differences between normal and tumour stromal fibroblasts and analyzes the molecular mechanisms (which involve growth factors, ECM components, matrix metalloproteinases, integrins and cell adhesion molecules) in the complex interactions between stromal fibroblasts and tumour cells. To date, several examples of heterotypic interactions between tumour stromal fibroblasts and tumour cells have supported the hypothesis that the tumour stroma promotes the growth of the tumour mass, as well as invasion and metastasis. However, it remains possible that the stroma acts essentially as a lo...
Novel signatures of cancer associated fibroblasts
2013
Increasing evidence indicates the importance of the tumor microenvironment, in particular cancer-associated fibroblasts, in cancer development and progression. In our study, we developed a novel, visually based method to identify new immunohistochemical signatures of these fibroblasts. The method employed a protein list based on 759 protein products of genes identified by RNA profiling from our previous study, comparing fibroblasts with differential growth-modulating effect on human cancers cells, and their first neighbors in the human protein interactome. These 2,654 proteins were analyzed in the Human Protein Atlas online database by comparing their immunohistochemical expression patterns in normal versus tumor-associated fibroblasts. Twelve new proteins differentially expressed in cancer-associated fibroblasts were identified (DLG1, BHLHE40, ROCK2, RAB31, AZI2, PKM2, ARHGAP31, ARHGAP26, ITCH, EGLN1, RNF19A and PLOD2), four of them can be connected to the Rho kinase signaling pathway. They were further analyzed in several additional tumor stromata and revealed that the majority showed congruence among the different tumors. Many of them were also positive in normal myofibroblast-like cells. The new signatures can be useful in immunohistochemical analysis of different tumor stromata and may also give us an insight into the pathways activated in them in their true in vivo context. The method itself could be used for other similar analysis to identify proteins expressed in other cell types in tumors and their surrounding microenvironment.
Cancer associated fibroblasts in cancer pathogenesis
Seminars in Cell & Developmental Biology, 2010
In the past century, gradual but sustained advances in our understanding of the molecular mechanisms involved in the growth and invasive properties of cancer cells have led to better management of tumors. However, many tumors still escape regulation and progress to advanced disease. Until recently, there has not been an organized and sustained focus on the "normal" cells in the vicinity of tumors. Interactions between the tumor and these host cells, as well as autonomous qualities of the host cells themselves, might explain why tumors in people with histologically similar cancers often behave and respond differently to treatment. Cells of the tumor microenvironment, variously referred to as cancer stroma, reactive stroma or carcinoma associated fibroblasts (CAF), exist in close proximity to the cancer epithelium. Both stromal and epithelial phenotypes co-evolve during tumorigenesis and it is now becoming clear that these stromal cells may not be the innocent bystanders they had been widely thought to be, but rather may be active contributors to carcinogenesis. Our group and others have shown the important role that CAF play in the progression of cancer. In this article we will address current trends in the study of the interactions between cancer stroma and tumor cells in different organs. We will also highlight perceived knowledge gaps and suggest research areas that need to be further explored to provide new targets for anti-cancer therapies.
OMICS: A Journal of Integrative Biology, 2020
Current therapeutic strategies targeting cancer cells within solid tumors have displayed limited success owing to the presence of non-cancer components referred to as the tumor stroma within the tumor microenvironment (TM). These stromal cells, extracellular matrix and blood vessels influence cancer cell response to therapy and play key roles in tumor relapse and resistance. Of the stromal cells present in the TM, a lot of attention has been given to cancerassociated fibroblasts (CAFs) as they are the most abundant and are important in cancer initiation, progression and therapy resistance. In this updated review I emphasize the role of CAFs in the regulation of tumor cell behaviour and reveal how CAF-derived factors and signaling influence tumor cell heterogeneity and development of novel strategies to combat cancer. To investigate the expression of CAF markers in tumor tissues versus normal tissues, transcriptomic data from The Cancer Genome Atlas (TCGA) and the Gene Expression Profiling Interactive Analysis (GEPIA) databases was used. Bioinformatic analysis reveals differential expression of CAF markers in several cancer types, underscoring the need for further multiomics and biochemical studies on CAFs, CAF subsets and markers. Differences in CAF markers' expression could be due to different cellular origins as well as the effect of cancer-specific tumor microenvironmental effect on CAFs. Lastly, I present recent advances in therapeutic targeting of CAFs and the success of such endeavours or its lack thereof. It is recommended that for patients' outcomes to improve, cancer treatment be combinatorial in nature, targeting both cancer cells and stromal cells and interactions.
Stromal myofibroblasts are drivers of invasive cancer growth
International Journal of Cancer, 2008
Tissue integrity is maintained by the stroma in physiology. In cancer, however, tissue invasion is driven by the stroma. Myofibroblasts and cancer-associated fibroblasts are important components of the tumor stroma. The origin of myofibroblasts remains controversial, although fibroblasts and bone marrow-derived precursors are considered to be the main progenitor cells. Myofibroblast reactions also occur in fibrosis. Therefore, we wonder whether nontumorous myofibroblasts have different characteristics and different origins as compared to tumor-associated myofibroblasts. The mutual interaction between cancer cells and myofibroblasts is dependent on multiple invasive growth-promoting factors, through direct cell-cell contacts and paracrine signals. Since fibrosis is a major side effect of radiotherapy, we address the question how the main methods of cancer management, including chemotherapy, hormonotherapy and surgery affect myofibroblasts and by inference the surrogate endpoints invasion and metastasis.
OMICS: A Journal of Integrative Biology
Solid tumors have complex biology and structure comprising cancer cells, stromal cells, and the extracellular matrix. While most therapeutics target the cancer cells, recent data suggest that cancer cell behavior and response to treatment are markedly influenced by the tumor microenvironment (TME). In particular, the cancerassociated fibroblasts (CAFs) are the most abundant stromal cells, and play a significant contextual role in shaping tumor initiation, progression, and metastasis. CAFs have therefore emerged as part of the nextgeneration cancer drug design and discovery innovation strategy. We report here new findings on differential expression and prognostic significance of CAF markers in several cancers. We utilized two publicly available resources: The Cancer Genomic Atlas and Gene Expression Profiling Interactive Analysis. We examined the expression of CAF markers, ACTA2, S100A4, platelet-derived growth factor receptor-beta [PDGFR-b], CD10, and fibroblast activation protein-alpha (FAP-a), in tumor tissues versus the adjacent normal tissues. We found that CAF markers were differentially expressed in various different tumors such as colon, breast, and esophageal cancers and melanoma. No CAF marker is expressed in the same pattern in all cancers, however. Importantly, we report that patients with colon adenocarcinoma and esophageal carcinoma expressing high FAP-a and CD10, respectively, had significantly shorter overall survival, compared with those with low levels of these CAF markers (p < 0.05). We call for continued research on TME biology and clinical evaluation of the CAF markers ACTA2, S100A4, PDGFR-b, CD10, and FAP-a in relation to prognosis of solid cancers in large population samples. An effective cancer drug design and discovery roadmap in the 21st century ought to be broadly framed, and include molecular targets informed by both cancer cell and TME variations.
The Role of Cancer-Associated Fibroblasts in Tumor Progression
Cancers
In the era of genomic medicine, cancer treatment has become more personalized as novel therapeutic targets and pathways are identified. Research over the past decade has shown the increasing importance of how the tumor microenvironment (TME) and the extracellular matrix (ECM), which is a major structural component of the TME, regulate oncogenic functions including tumor progression, metastasis, angiogenesis, therapy resistance, and immune cell modulation, amongst others. Within the TME, cancer-associated fibroblasts (CAFs) have been identified in several systemic cancers as critical regulators of the malignant cancer phenotype. This review of the literature comprehensively profiles the roles of CAFs implicated in gastrointestinal, endocrine, head and neck, skin, genitourinary, lung, and breast cancers. The ubiquitous presence of CAFs highlights their significance as modulators of cancer progression and has led to the subsequent characterization of potential therapeutic targets, whic...