Quantitative Analysis of Localized Sources Identified by Focal Impulse and Roter Modulation Mapping in Atrial Fibrillation (original) (raw)

Prevalence, characteristics, mapping, and catheter ablation of potential rotors in nonparoxysmal atrial fibrillation

Circulation. Arrhythmia and electrophysiology, 2013

Identification of critical atrial substrates in patients with nonparoxysmal atrial fibrillation (AF) failing to respond to pulmonary vein isolation is important. This study investigated the signal characteristics, substrate nature, and ablation results of rotors during AF. In total, 53 patients (age=55±8), 31 with persistent AF and 22 with long-lasting AF, underwent pulmonary vein isolation and substrate modification of complex fractionated atrial electrograms. Small-radius-reentrant rotors were identified from signal analyses of the dominant frequency and fractionation interval and nonlinear analyses (newly developed, beat-to-beat nonlinear measurement of the repetitiveness of the electrogram morphology>6 seconds). In 15% of the patients, activation maps demonstrated occurrences of rotor-like small-radius reentrant circuits (n=9; 1.1 per patient; cycle length=110±21 ms; diameter=11±6 mm) with fibrillation occurring outside these areas. Rotors were identified by conventional poin...

Role of Rotors in the Ablative Therapy of Persistent Atrial Fibrillation

Catheter ablation is more effective than pharmacological therapy for the secondary prevention of patients with paroxysmal 1,2 and persistent 3,4 atrial fibrillation (AF) and has an emerging role in the primary prevention of paroxysmal AF. 5,6 Nevertheless, in randomised clinical trials (RCTs) its success in treating patients with paroxysmal AF is 40-60 % for a single procedure and 70 % for multiple procedures at one year, 1,2 and results for persistent AF are lower. 7,8 Thus, there is an urgent unmet need to improve our understanding of mechanistic targets for AF in each patient, to match recent advances in ablation energy delivery and catheter positioning.

Evaluating spatial disparities of rotor sites and high dominant frequency regions during catheter ablation for PersAF patients targeting high dominant frequency sites using non-contacting mapping

Frontiers in Physiology, 2022

Purpose: Several studies have emphasised the significance of high dominant frequency (HDF) and rotors in the perpetuation of AF. However, the colocalisation relationship between both attributes is not completely understood yet. In this study, we aim to evaluate the spatial distributions of HDF regions and rotor sites within the left atrium (LA) pre and post HDF-guided ablation in PersAF. Methods: This study involved 10 PersAF patients undergoing catheter ablation targeting HDF regions in the LA. 2048-channels of atrial electrograms (AEG) were collected pre-and post-ablation using a non-contact array (EnSite, Abbott). The dominant frequency (DF, 4-10 Hz) areas with DF within 0.25 Hz of the maximum out of the 2048 points were defined as "high" DF (HDF). Rotors were defined as PSs that last more than 100 ms and at a similar location through subsequent phase frames over time. Results: The results indicated an extremely poor spatial correlation between the HDF regions and sites of the rotors in pre-versus post-ablation cases for the non-terminated (pre: CORR; 0.05 ± 0.17. vs. post: CORR; −0.030 ± 0.19, and with terminated patients (pre: CORR; −0.016 ± 0.03. post: CORR; −0.022 ± 0.04). Rotors associated with AF terminations had a long-lasting lifespan postablation (non-terminated vs. terminated 120.7 ± 6.5 ms vs. 139.9 ± 39.8 ms), high core velocity (1.35 ± 1.3 mm/ms vs. 1.32 ± 0.9 mm/ms), and were less meandering (3.4 ± 3.04 mm vs. 1.5 ± 1.2 mm). Although the results suggest a poor spatial overlapping between rotors' sites and sites of AFCL changes in terminated and non-terminated patients, a higher correlation was determined

Rotor mapping and ablation to treat atrial fibrillation

Rotors have long been postulated to drive atrial fibrillation, but evidence has been limited to animal models. This changed recently with the demonstration using focal impulse and rotor modulation (FIRM) mapping that rotors act as human atrial fibrillation sources. This mechanistic approach to diagnosing the causes of atrial fibrillation in individual patients has been supported by substantially improved outcomes from FIRM-guided ablation, resulting in increased attention to rotors as therapeutic targets.

Non-invasive identification of stable rotors and focal sources for human atrial fibrillation: mechanistic classification of atrial fibrillation from the electrocardiogram

EP Europace, 2013

To develop electrocardiogram (ECG) tools to quantify the number of sources for atrial fibrillation (AF), i.e. spatially stable rotors and focal impulses, and whether they lie in right or left atrium. Intracardiac mapping has recently shown that paroxysmal and persistent AF is sustained by rotors or focal sources that are stable in location and thus targets for limited ablation [focal impulse and rotor modulation (FIRM)] to eliminate AF. Importantly, the numbers and locations of concurrent sources determine both the complexity of AF and the approach for ablation. Methods and results In 36 AF patients (n ¼ 29 persistent, 63 + 9 years) in the CONventional ablation with or without Focal Impulse and Rotor Modulation (CONFIRM) trial, we developed phase lock (PL) to quantify spatial repeatability of ECG 'F-waves' between leads over time. Phase lock spectrally quantifies the angle u between F-wave voltages in planes formed by ECG leads I, aVF, and V1 at successive points in time. We compared PL with ECG spectral dominant frequency (DF) and organizational index (OI) to characterize stable rotors and focal sources validated by intracardiac FIRM mapping. Focal impulse and rotor modulation ablation alone at ≤3 sources acutely terminated and rendered AF non-inducible or substantially slowed AF in 31 of 36 patients. Receiver operating characteristics of PL for this endpoint had area under the curve (AUC) ¼ 0.72, and the optimum cut-point (PL ¼ 0.09) had 74% sensitivity, 92% positive predictive value (PPV). Receiver operating characteristics areas for OI and DF were 0.50 and 0.58, respectively. Left (n ¼ 28) or right (n ¼ 3) atrial sources were localized by PL with AUC ¼ 0.85, sensitivity 100%, PPV 30%, and negative predictive value 100%. Spectral DF provided AUC ¼ 0.79. Notably, PL did not comigrate with diagnosis of paroxysmal or persistent AF (P ¼ NS), unlike ECG DF. Conclusion The novel metric of ECG PL identifies patients with fewer (≤3) or greater numbers of stable rotors/focal sources for AF, validated by intracardiac FIRM mapping, and localized them to right or left atria. These data open the possibility of using 12-lead ECG analyses to classify AF mechanistically and plan procedures for right-or left-sided FIRM ablation.

The role of rotors in atrial fibrillation

Journal of thoracic disease, 2015

Despite significant advances in our understanding of atrial fibrillation (AF) mechanisms in the last 15 years, ablation outcomes remain suboptimal. A potential reason is that many ablation techniques focus on anatomic, rather than patient-specific functional targets for ablation. Panoramic contact mapping, incorporating phase analysis, repolarization and conduction dynamics, and oscillations in AF rate, overcomes many prior difficulties with mapping AF. This approach provides evidence that the mechanisms sustaining human AF are deterministic, largely due to stable electrical rotors and focal sources in either atrium. Ablation of such sources (Focal Impulse and Rotor Modulation: FIRM ablation) has been shown to improve ablation outcome compared with conventional ablation alone; independent laboratories directly targeting stable rotors have shown similar results. Clinical trials examining the role of stand-alone FIRM ablation are in progress. Looking forward, translating insights from...

Ablating Atrial Fibrillation: Customizing Lesion Sets Guided by Rotor Mapping

Ablation occupies an increasing role in the contemporary management of atrial fibrillation (AF), but results are suboptimal, particularly for persistent AF. While an anatomic approach to ablation is a highly efficacious and safe method to isolate pulmonary vein (PV) triggers, recurrence of AF is not always associated with PV reconnection, and there is compelling evidence that non-PV sites sustain AF after it is triggered. Recent developments in wide-area mapping and signal processing now identify rotors in the vast majority of AF patients that sustain AF and whose elimination improves long-term freedom from AF in multicenter studies. Investigators have now demonstrated rotor and focal sources for AF that show many analogous properties between approaches: they lie in spatially reproducible regions temporally over hours to days, and they are amenable to targeted ablation. This review outlines the rationale and technical developments supporting this mechanistic paradigm for human AF, and discusses how rotor mapping may be implemented for individual patient customization of lesion sets. Mechanistic studies are required to explain why rotor elimination (or other ablation approaches) producing long-term elimination of AF may not always terminate AF acutely, how AF correlates with structural changes on magnetic resonance imaging, and how these findings can be integrated clinically with current ablation strategies to improve patient outcomes.