Influenza della temperatura di pirolisi e del tempo di residenza sulle proprietà fisico-chimiche del biochar prodotto da pollina (original) (raw)
Abstract
Poultry manure (PM) chars were obtained at different temperatures and charring times. Chemical−physical characterization of the different PM chars was conducted by cross-polarization magic angle spinning (CPMAS) 13 C NMR spectroscopy and thermal analysis. CPMAS 13 C NMR spectra showed that the chemical composition of PM char is dependent on production temperature rather than on production duration. Aromatic and alkyl domains in the PM chars obtained at the lowest temperatures remained unchanged at all heating times applied for their production. The PM char obtained at the highest temperature consisted only of aromatic structures having chemical nature that also appeared invariant with heating time. Thermogravimetry revealed differences in the thermo-oxidative stability of the aromatic domains in the different PM chars. The PM char produced at the highest temperature appeared less stable than those produced at the lowest temperatures. This difference was explained by a protective effect of the alkyl groups, which are still present in chars formed at lower temperature. The analysis of the chemical and physicochemical character of poultry manure chars produced at different temperatures can increase understanding of the role of these materials in the properties and behavior of char-amended soils.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (55)
- Roach, S.; Isenhart, L.; McKenna, L.; Cunningham, M. Filthy Feed -The Risky and Unregulated Practice of Feeding Poultry Litter to Cattle;
- FACT, Food Animal Concerns Trust: Chicago, IL, USA, 2009.
- Huang, G.; Wang, X.; Han, L. Rapid estimation of nutrients in chicken manure during plant-field composting using physicochemical properties. Bioresour. Technol. 2011, 102, 1455-1461.
- Chan, K. Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 2008, 46, 437-444.
- Khaleel, R.; Reddy, K. P.; Overcash, M. R. Changes in soil physical properties due to waste applications: a review. J. Environ. Qual. 1981, 10, 133-141.
- Lal, R.; Kang, B. T. Management of organic matter in soils of the tropics and subtropics. XII Congress International Society Soil Science, New Delhi, India; CIRAD: Paris, France, 1982; pp 152-178.
- Metzger, L.; Yaron, B. Influence of sludge organic matter on soil physical properties. Adv. Soil Sci. 1987, 7, 141-163.
- Davies, D. B.; Payne, D. Management of soil physical properties.
- In Russell's Soil Conditions and Plant Growth, 11th ed.; Wild, A., Ed.; Longman: Harlow, Essex, UK, 1988.
- Sanchez, P. A.; Palm, C. A.; Szott, L. T.; Cuevas, E.; Lal, R. Organic input management in tropical agroecosystems. In Dynamics of Soil Organic Matter in Tropical Ecosystems; Coleman, D. C., Oades, J. M., Uehara, G., Eds.; University of Hawaii Press: Honolulu, HI, USA, 1989.
- Haynes, R. J.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosyst. 1998, 51 (2), 123-137.
- Perkins, H. F.; Parker, M. B.; Walker, M. L. Chicken Manure - Its Production, Composition, and Use as a Fertilizer; Georgia Agricultural Experiment Stations Bulletin 123; 1964.
- Wilkinson, K. G.; Harapas, D.; Tee, E.; Tomkins, R. B.; Premier, R. Strategies for the Safe Use of Poultry Litter in Food Crop Production. Horticulture Australia Ltd.: Sidney, Australia, 2003.
- Chan, K. Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Assessing the agronomic values of contrasting char materials on Australian hardsetting soil. In Proceedings of the Conference of the International Agrichar Initiative, April 30-May 2, 2007, Terrigal, NSW, Australia; 2007.
- Gay, S. W.; Schmidt, D. R.; Clanton, C. J.; Janni, K. A.; Jacobson, L. D.; Weisberg, S. Odor, total reduced sulfur and ammonia emissions from animal housing facilities and manure storage units in Minnesota. Appl. Eng. Agric. 2003, 19 (3), 347-360.
- Fan, Z. J.; Ai, Y. W.; Li, J. M.; Li, G. W. Discussion of controlling N loss from volatilization in animal manure. J. Sichuan Normal Univ. 2000, 23 (5), 548-550.
- Shinogi, Y.; Kanri, Y. Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresour. Technol. 2003, 90 (3), 241-247.
- Popov, V.; Itoh, H.; Brebbia, C. A.; Kungoles, A. Waste Management and the Environment II; WIT Press: Boston, MA, USA, 2004.
- De Pasquale, C.; Marsala, V.; Berns, A. E.; Valagussa, M.; Pozzi, A.; Alonzo, G.; Conte, P. Fast field cycling NMR relaxometry characterization of biochars obtained from an industrial thermochem- ical process. J. Soil Sediment 2012, 2, 1211-1221.
- Schmidt, M. W. I; Noack, A. G. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem. Cy. 2000, 14 (3), 777-793.
- Gaunt, J. L.; Lehmann, J. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ. Sci. Technol. 2008, 42, 4152-4158.
- Matthews, J. A. Carbon negative biofuels. Energy Policy 2008, 36, 940-945.
- Lehmann, J.; Czimczik, C.; Laird, D.; Sohi, S. Stability of biochar in the soil. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009.
- Sohi, S. P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47-82.
- Uchimiya, M.; Lima, I. M.; Klasson, K. T.; Chang, S.; Wartelle, L. H.; Rodgers, J. E. Immobilization of heavy metal ions (Cu II , Cd II , Ni II , and Pb II ) by broiler litter-derived biochars in water and soil. J. Agric. Food Chem. 2010, 58, 5538-5544.
- Yuan, J. H.; Xu, R. K.; Wang, N.; Li, J. Y. Amendment of acid soils with crop residues and biochars. Pedosphere 2011, 21 (3), 302- 308.
- Kishimoto, S.; Sugiura, G. Charcoal as a soil conditioner. Int. Achieve Future 1985, 5, 12-23.
- Mikan, C. J.; Abrams, M. D. Altered forest composition and soil properties of historic charcoal hearths in southeastern Pennsylvania. Can. J. For. Res. 1995, 25, 687-696.
- Rondon, M. A.; Lehmann, J.; Ramirez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fert. Soils 2007, 43, 699-708.
- Rillig, M. C.; Wagner, M.; Salem, M.; Antunes, P. M.; George, C.; Ramke, H. G.; Titirici, M.-M.; Antonietti, M. Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Appl. Soil Ecol. 2010, 45 (3), 238-242.
- Conte, P.; Marsala, V.; De Pasquale, C.; Bubici, S.; Valagussa, M.; Pozzi, A.; Alonzo, G. Nature of water-biochar interface interactions. GCB Bioenergy 2013, 5, 116-121.
- Krull, E. S.; Baldock, J. A.; Skjemstad, J. O.; Smernik, R. J. Characteristics of biochar: organo-chemical properties. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009.
- Lehmann, J.; Joseph, S. Biochar for environmental management: an introduction. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009.
- Gundale, M. J.; De Luca, T. H. Temperature and source material influence ecological attributes of ponderosa pine and Douglas- fir charcoal. For. Ecol. Manag. 2006, 231, 86-93.
- Knicker, H. Pyrogenic organic matter in soil: its origin and occurrence, its chemistry and survival in soil environments. Quat. Int. 2011, 243 (2), 251-263.
- Wiedner, K.; Rumpel, C.; Steiner, C.; Pozzi, A.; Maas, R.; Glaser, B. Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass Bioenergy 2013, DOI: 10.1016/j.biombioe.2013.08.026 (article in press).
- Zhao, L.; Cao, X.; Masěk, O.; Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard Mater. 2013, 256-257, 1-9.
- Warnock, D. D.; Lehmann, J.; Kuyper, T. W.; Rilling, M. C. Mycorrhizal responses to biochar in soil -concepts and mechanisms. Plant Soil 2007, 300, 9-20.
- Wolf, M.; Lehndorff, E.; Wiesemberg, G. L. B.; Stockhausen, M.; Schwark, L.; Amelung, W. Towards reconstruction of past fire regimes from geochemical analysis of charcoal. Org. Geochem. 2013, 55, 11-21.
- Berns, A. E.; Conte, P. Effect of ramp size and sample spinning speed on CPMAS C-13 NMR spectra of soil organic matter. Org. Geochem. 2011, 42, 926-935.
- Wendlandt, W. W. M. Thermal Analysis; Wiley: New York, 1986.
- Goḿez, X.; Diaz, M. C.; Cooper, M.; Blanco, D.; Morań, A.; Snape, E. Study of biological stabilization processes of cattle and poultry manure by thermogravimetric analysis and 13 C NMR. Chemosphere 2007, 68, 1889-1897.
- Conte, P.; De Pasquale, C.; Novotny, E. H.; Caponetto, G.; Laudicina, V. A.; Ciofalo, M.; Panno, M.; Palazzolo, E.; Badalucco, L.; Alonzo, G. CPMAS 13 C NMR characterization of leaves and litters from the reafforestated area of Mustigarufi in Sicily (Italy). Open Magn. Reson. J. 2010, 3, 89-95.
- Wilson, M. A. N.M.R. Techniques and Applications in Geochemistry and Soil Chemistry, 1st ed.; Pergamon Press: London, UK, 1987.
- McBeath, A. V.; Smernik, R. J. Variation in the degree of aromatic condensation of chars. Org. Geochem. 2009, 40, 1161-1168.
- Kucerik, J.; Kovar, J.; Pekar, M. Thermoanalytical investigations of lignite humic acid fractions. J. Therm. Anal. Calorim. 2004, 76, 55- 65. (45) Aleǹ, R.; Kuoppala, E.; Oesch, P. Formation of the main degradation compound groups from wood and its components during pyrolysis. J. Anal. Appl. Pyrolysis 1996, 36, 137-148.
- Gaskin, J. W.; Steiner, C.; Harris, K.; Das, K. C.; Bibens, B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASAE 2008, 51, 2061-2069.
- Dell'Abate, M. T.; Benedetti, A.; Sequi, P. Thermal methods of organic matter maturation monitoring during a composting process. J. Therm. Anal. Calorim. 2000, 61 (2), 389-396.
- Liodakis, S.; Katsigiannis, G.; Kakali, G. Ash properties of some dominant Greek forest species. Thermochim. Acta 2005, 437, 158-167.
- Lopez-Capel, E.; Sohi, S. P.; Gaunt, J. L.; Manning, D. A. C. Use of thermogravimetry-differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Sci. Soc. Am. J. 2005, 69, 136-140.
- Kucerik, J.; Kamenarova, D.; Valkova, D.; Pekar, M.; Kislinger, J. The role of various compounds in humic acids stability studied by TG and DTA. J. Therm. Anal. Calorim. 2006, 84 (3), 715-720.
- Melligan, F.; Dussan, K.; Auccaise, R.; Novotny, E. H.; Leahy, J. J.; Hayes, M. H. B.; Kwapinski, W. Characterization of the products from pyrolysis of residues after acid hydrolysis of Miscanthus. Bioresour. Technol. 2012, 108, 258-263.
- Conte, P.; Berns, A. E. Dynamics of cross polarization in solid state nuclear magnetic resonance experiments of amorphous and heterogeneous natural organic substances. Anal. Sci. 2008, 24 (9), 1183-1188.
- Valkova, D.; Kislinger, J.; Pekar, M.; Kucerik, J. The kinetics of thermo-oxidative humic acids degradation studied by isoconversional methods. J. Therm. Anal. Calorim. 2007, 89 (3), 957-964.
- S ̌estaḱ, J. Heat, Thermal Analysis and Society; Nucleus HK Press: Hradec Kralove, Czech Republic, 2004.