The expression of slow myosin during mammalian somitogenesis and limb bud differentiation (original) (raw)

Immunocytochemical and electrophoretic analyses of changes in myosin gene expression in cat limb fast and slow muscles during postnatal development

Journal of Muscle Research and Cell Motility, 1988

Changes in myosin synthesis during the postnatal development of the fast extensor digitorum longus (EDL) and the slow soleus muscles of the kitten were examined using immunocytochemical techniques supplemented by pyrophosphate gel electrophoresis and gel electrophoresis-derived enzyme linked immunosorbent assay (GEDELISA) of myosin isoforms. The antibodies used were monoclonals against heavy chains of slow and fast myosins and a polyclonal against foetal/embryonic myosin. In both muscles in the newborn kitten, there was a population of more mature fibres which stained strongly for slow but weakly for foetal/embryonic myosin. These fibres were considered to be primary fibres. They formed 4.8% of EDL fibres and 26.% of soleus fibres at birth, and continued to express slow myosin in adult muscles. The less mature secondary fibres stained strongly for foetal/embryonic myosin, and these could be divided into two subpopulations; fast Secondaries in which foetal/embryonic myosin was replaced by fast myosin, and slow secondaries in which the myosin was replaced by slow myosin. At 50 days the EDL had a large population of fast secondaries (83% of total fibres) and a small population of slow secondaries which gradually transformed into fast fibres with maturity. The vast majority of secondary fibres in the soleus were slow secondaries, in which slow myosin synthesis persisted in adult life. There was a restricted zone of fast secondaries in the soleus, and these gradually transformed into slow fibres in adult life. It is proposed that the emergence of primary fibres and the two populations of secondary fibres is myogenically determined.

A developmentally regulated disappearance of slow myosin in fast-type muscles of the mouse

FEBS Letters, 1984

Histochemistry and immunocytochemistry using an antibody to adult rat slow-type myosin demonstrated that about 10% of the fibers in the mouse extensor digitorum longus and semimembranosus muscles contain slow myosin during the first month after birth. In adult animals, these muscles have only t&0.8% slow myosin-containing fibers. These results demonstrate a developmentally linked disappearance of an adult-type myosin, and show that the adult phenotype of muscle fibers is not necessarily determined before birth as previously suggested.

The expression of myosin genes in developing skeletal muscle in the mouse embryo

The Journal of Cell Biology, 1990

Using in situ hybridization, we have investigated the temporal sequence of myosin gene expression in the developing skeletal muscle masses of mouse embryos. The probes used were isoform-specific, 35S-labeled antisense cRNAs to the known sarcomeric myosin heavy chain and myosin alkali light chain gene transcripts. Results showed that both cardiac and skeletal myosin heavy chain and myosin light chain mRNAs were first detected between 9 and 10 d post coitum (p.c.) in the myotomes of the most rostral somites. Myosin transcripts appeared in more caudal somites at later stages in a developmental gradient. The earliest myosin heavy chain transcripts detected code for the embryonic skeletal (MHCemb) and beta-cardiac (MHC beta) isoforms. Perinatal myosin heavy chain (MHCpn) transcripts begin to accumulate at 10.5 d p.c., which is much earlier than previously reported. At this stage, MHCemb is the major MHC transcript. By 12.5 d p.c., MHCpn and MHCemb mRNAs are present to an equal extent, an...

Expression of myosin heavy chain and of myogenic regulatory factor genes in fast or slow rabbit muscle satellite cell cultures

Journal of Muscle Research and Cell Motility, 1995

We investigated the myogenic properties of rabbit fast or slow muscle satellite cells during their differentiation in culture, with a particular attention to the expression of myosin heavy chain and myogenic regulatory factor genes. Satellite cells were isolated from Semimembranosus proprius (slow-twitch muscle; 100% type I fibres) and Semimembranosus accessorius (fast-twitch musde; almost 100% type II fibres) muscles of 3-month-old rabbits. Satellite cells in culture possess different behaviours according to their origin. Cells isolated from slow muscle proliferate faster, fuse earlier into more numerous rnyotubes and mature more rapidly into striated contractile fibres than do cells isolated from fast muscle. This pattern of proliferation and differentiation is also seen in the expression of myogenic regulatory factor genes. Myf5 is detected in both fast or slow 6-day-old cell cultures, when satellite cells are in the exponential stage of proliferation. MyoD and myogenin are subsequently detected in slow satellite cell cultures, but their expression in fast cell cultures is delayed by 2 and 4 days respectively. MRF4 is detected in both types of cultures when they contain striated and contractile myofibres. Muscle-specific myosin heavy chains are expressed earlier in slow satellite cell cultures. No adult myosin heavy chain isoforms are detected in fast cell cultures for 13 days, whereas cultures from slow cells express neonatal, adult slow and adult fast myosin heavy chain isoforms at that time. In both fast and slow satellite cell cultures containing striated contractile fibres, neonatal and adult myosin heavy chain isoforms are coexpressed. However, cultures made from satellite cells derived from slow muscles express the slow myosin heavy chain isoform, in addition to the neonatal and the fast isoforms. These results are further supported by the expression of the mRNA encoding the adult myosin heavy chain isoforms. These data provide further evidence for the existence of satellite cell diversity between two rabbit muscles of different fibre-type composition, and also suggest the existence of differently preprogrammed satellite cells.

Innervation regulates myosin heavy chain isoform expression in developing skeletal muscle fibers

Mechanisms of Development, 1996

The influence of innervation on primary and secondary myogenesis and its relation to fiber type diversity were investigated in two specific wing muscles of quail embryo, the posterior (PLD) and anterior latissimus dorsi (ALD). In the adult, these muscles are composed almost exclusively of pure populations of fast and slow fibers, respectively. When slow ALD and fast PLD muscles developed in ovo in an aneurogenic environment induced after neural tube ablation, the cardiac ventricular myosin heavy chain (MHC) isoform was not expressed. The adult slow MHC isoform, SM2, appeared by embryonic day 7 (ED 7) in normal innervated slow ALD but was not expressed in denervated muscle. Analysis of in vitro differentiation of myoblasts from fast PLD and slow ALD muscles isolated from ED 7 control and neuralectomized quail embryos showed no fundamental differences in the pattern of MHC isoform expression. Newly differentiated fibers accumulated cardiac ventricular, embryonic fast, slow SMl and SM3 MHC isoforms. Nevertheless, the expression of slow SM2 isoform in myotubes formed from slow ALD myoblasts only occurred when myoblasts were cultured in the presence of embryonic spinal cord. Our studies demonstrate that the neural tube influences primary as well as secondary myotube differentiation in avian forelimb and facilitates the expression of different MHC, particularly slow SM2 MHC gene expression in slow myoblasts.

Distribution of myosin mRNA during development and regeneration of skeletal muscle fibers

Developmental Biology, 1991

Myosin mRNA distribution among subcellular compartments of anterior tibialis muscles in rabbit is monitored by in situ hybridization. A high density of mRNA was widely distributed throughout myotubes from 29-day fetal muscle and from regenerating adult muscle. All cytoplasmic spaces contained mRNA except where scattered myofibrils and centrally located nuclei were found. In fibers from 22-week-old rabbits, myosin mRNA was concentrated under the sarcolemma and excluded from the consolidated myofibrils and peripheral nuclei. The dispersal of mRNA through the cytoplasm in myotubes suggests that translation of myosin is widespread and that rapid myofibril assembly can occur throughout the fiber.

Novel Murine Clonal Cell Lines Either Express Slow or Mixed (Fast and Slow) Muscle Markers Following Differentiation In Vitro

We have investigated whether the phenotype of myogenic clones derived from satellite cells of different muscles from the transgenic immortomouse depended on muscle type origin. Clones derived from neonatal, or 6-to 12-week-old fast and slow muscles, were analyzed for myosin and enolase isoforms as phenotypic markers. All clones derived from slow-oxidative muscles differentiated into myotubes with a preferentially slow contractile phenotype, whereas some clones derived from rapid-glycolytic or neonatal muscles expressed both fast and slow myosin isoforms. Thus, muscle origin appears to bias myosin isoform expression in myotubes. The neonatal clone (WTt) was cultivated in various medium and substrate conditions, allowing us to determine optimized conditions for their differentiation. Matrigel allowed expressions of adult myosin isoforms, and an isozymic switch from embryonic ␣toward muscle-specific ␤-enolase, never previously observed in vitro. These cells will be a useful model for in vitro studies of muscle fiber maturation and plasticity.

The Emergence of Embryonic Myosin Heavy Chain during Branchiomeric Muscle Development

Life

A prerequisite for discovering the properties and therapeutic potential of branchiomeric muscles is an understanding of their fate determination, pattering and differentiation. Although the expression of differentiation markers such as myosin heavy chain (MyHC) during trunk myogenesis has been more intensively studied, little is known about its expression in the developing branchiomeric muscle anlagen. To shed light on this, we traced the onset of MyHC expression in the facial and neck muscle anlagen by using the whole-mount in situ hybridization between embryonic days E9.5 and E15.5 in the mouse. Unlike trunk muscle, the facial and neck muscle anlagen express MyHC at late stages. Within the branchiomeric muscles, our results showed variation in the emergence of MyHC expression. MyHC was first detected in the first arch-derived muscle anlagen, while its expression in the second arch-derived muscle and non-somitic neck muscle began at a later time point. Additionally, we show that no...