Measuring partition and diffusion coefficients for volatile organic compounds in vinyl flooring (original) (raw)

Interactions between volatile organic compounds (VOCs) and vinyl flooring (VF), a relatively homogenous, diffusion-controlled building material, were characterized. The sorption/desorption behavior of VF was investigated using single-component and binary systems of seven common VOCs ranging in molecular weight from n-butanol to npentadecane. The simultaneous sorption of VOCs and water vapor by VF was also investigated. Rapid determination of the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) for each VOC was achieved by placing thin VF slabs in a dynamic microbalance and subjecting them to controlled sorption/desorption cycles. K and D are shown to be independent of concentration for all of the VOCs and water vapor. For the four alkane VOCs studied, K correlates well with vapor pressure and D correlates well with molecular weight, providing a means to estimate these parameters for other alkane VOCs. While the simultaneous sorption of a binary mixture of VOCs is noncompetitive, the presence of water vapor increases the uptake of VOCs by VF. This approach can be applied to other diffusion-controlled materials and should facilitate the prediction of their source/sink behavior using physically-based models. #