Subunits of the regulatory complex of the 26S protease (original) (raw)

Assembly of the regulatory complex of the 26S proteasome

Molecular biology reports, 1999

The 19S regulatory complex (RC) of 26S proteasomes is a 900-1000 kDa particle composed of 18 distinct subunits (S1-S15) ranging in molecular mass from 25 to 110 kDa. This particle confers ATP-dependence and polyubiquitin (polyUb) recognition to the 26S proteasome. The symmetry and homogenous structure of the proteasome contrasts sharply with the remarkable complexity of the RC. Despite the fact that the primary sequences of all the subunits are now known, insight has been gained into the function of only eight subunits. The six ATPases within the RC constitute a subfamily (S4-like ATPases) within the AAA superfamily and we have shown that they form specific pairs in vitro. We have now determined that putative coiled-coils within the variable N-terminal regions of these proteins are likely to function as recognition elements that direct the proper placement of the ATPases within the RC. We have also begun mapping putative interactions between non-ATPase subunits and S4-like ATPases. ...

Regulatory subunit interactions of the 26S proteasome, a complex problem

Trends in Biochemical Sciences, 2000

The 26S proteasome is the major non-lysosomal protease in eukaryotic cells. This multimeric enzyme is the integral component of the ubiquitinmediated substrate degradation pathway. It consists of two subcomplexes, the 20S proteasome, which forms the proteolytic core, and the 19S regulator (or PA700), which confers ATP dependency and ubiquitinated substrate specificity on the enzyme. Recent biochemical and genetic studies have revealed many of the interactions between the 17 regulatory subunits, yielding an approximation of the 19S complex topology. Inspection of interactions of regulatory subunits with non-subunit proteins reveals patterns that suggest these interactions play a role in 26S proteasome regulation and localization.

Insights into the molecular architecture of the 26S proteasome

Proceedings of the National Academy of Sciences, 2009

Cryo-electron microscopy in conjunction with advanced image analysis was used to analyze the structure of the 26S proteasome and to elucidate its variable features. We have been able to outline the boundaries of the ATPase module in the ''base'' part of the regulatory complex that can vary in its position and orientation relative to the 20S core particle. This variation is consistent with the ''wobbling'' model that was previously proposed to explain the role of the regulatory complex in opening the gate in the ␣-rings of the core particle. In addition, a variable mass near the mouth of the ATPase ring has been identified as Rpn10, a multiubiquitin receptor, by correlating the electron microscopy data with quantitative mass spectrometry.

Toward an integrated structural model of the 26S proteasome

Molecular & cellular proteomics : MCP, 2010

The 26S proteasome is the end point of the ubiquitinproteasome pathway and degrades ubiquitylated substrates. It is composed of the 20S core particle (CP), where degradation occurs, and the 19S regulatory particle (RP), which ensures substrate specificity of degradation. Whereas the CP is resolved to atomic resolution, the architecture of the RP is largely unknown. We provide a comprehensive analysis of the current structural knowledge on the RP, including structures of the RP subunits, physical protein-protein interactions, and cryoelectron microscopy data. These data allowed us to compute an atomic model for the CP-AAA-ATPase subcomplex. In addition to this atomic model, further subunits can be mapped approximately, which lets us hypothesize on the substrate path during its degradation.

The central unit within the 19S regulatory particle of the proteasome

Nature Structural & Molecular Biology, 2008

The 26S proteasome is a multisubunit enzyme composed of a cylindrical catalytic core (20S) and a regulatory particle (19S) that together perform the essential degradation of cellular proteins tagged by ubiquitin. To date, however, substrate trajectory within the complex remains elusive. Here we describe a previously unknown functional unit within the 19S, comprising two subunits, Rpn1 and Rpn2. These toroids physically link the site of substrate recruitment with the site of proteolysis. Rpn2 interfaces with the 20S, whereas Rpn1 sits atop Rpn2, serving as a docking site for a substrate-recruitment factor. The 19S ATPases encircle the Rpn1-Rpn2 stack, covering the remainder of the 20S surface. Both Rpn1-Rpn2 and the ATPases are required for substrate translocation and gating of the proteolytic channel. Similar pairing of units is found in unfoldases and nuclear transporters, exposing common features of these protein nanomachines.

ATP Hydrolysis-Dependent Disassembly of the 26S Proteasome Is Part of the Catalytic Cycle

Cell, 2005

ATP hydrolysis is required for degradation of polyubiquitinated proteins by the 26S proteasome but is thought to play no role in proteasomal stability during the catalytic cycle. In contrast to this view, we report that ATP hydrolysis triggers rapid dissociation of the 19S regulatory particles from immunopurified 26S complexes in a manner coincident with release of the bulk of proteasome-interacting proteins. Strikingly, this mechanism leads to quantitative disassembly of the 19S into subcomplexes and free Rpn10, the polyubiquitin binding subunit. Biochemical reconstitution with purified Sic1, a prototype substrate of the Cdc34/ SCF ubiquitin ligase, suggests that substrate degradation is essential for triggering the ATP hydrolysisdependent dissociation and disassembly of the 19S and that this mechanism leads to release of degradation products. This is the first demonstration that a controlled dissociation of the 19S regulatory particles from the 26S proteasome is part of the mechanism of protein degradation.

RETRACTED: ATP Hydrolysis-Dependent Disassembly of the 26S Proteasome Is Part of the Catalytic Cycle

Cell, 2005

ATP hydrolysis is required for degradation of polyubiquitinated proteins by the 26S proteasome but is thought to play no role in proteasomal stability during the catalytic cycle. In contrast to this view, we report that ATP hydrolysis triggers rapid dissociation of the 19S regulatory particles from immunopurified 26S complexes in a manner coincident with release of the bulk of proteasome-interacting proteins. Strikingly, this mechanism leads to quantitative disassembly of the 19S into subcomplexes and free Rpn10, the polyubiquitin binding subunit. Biochemical reconstitution with purified Sic1, a prototype substrate of the Cdc34/ SCF ubiquitin ligase, suggests that substrate degradation is essential for triggering the ATP hydrolysisdependent dissociation and disassembly of the 19S and that this mechanism leads to release of degradation products. This is the first demonstration that a controlled dissociation of the 19S regulatory particles from the 26S proteasome is part of the mechanism of protein degradation.

The 26S-proteasome: regulation and substrate recognition

Molecular biology reports, 1997

There is extensive reprogramming of the ATPase regulators of the 26S proteasome before the programmed elimination of the abdominal intersegmental muscles (ISM) after eclosion in Manduca sexta [1]. This extensive ATPase reprogramming only occurs in ISM which are destined to die and not in flight muscle (FM). The MS73 ATPase also increases in the proleg retractor muscles which die at a developmentally different stage to ISM. The non-ATPase regulator S5a shows a similar increase to the ATPase regulators. We have cloned the Manduca SUG2 ATPase and shown that this ATPase is a component of the 26S proteasome. This ATPase shows a similar increase in concentration to the other ATPases in 26S proteasomes before muscle death. The SUG2 ATPase is also associated with other smaller complexes besides the 26S proteasome which act as activators of the 26S proteasome. Finally, in a yeast two-hybrid genetic screen we have identified a protein in human brain which interacts with the MS73 ATPase (and h...

Nucleotidase Activities of the 26S Proteasome and Its Regulatory Complex

Journal of Biological Chemistry, 1996

The 26 S proteasome can be assembled from the multicatalytic protease (or 20 S proteasome) and a large multisubunit regulatory complex in an ATP-dependent reaction. The 26 S proteasome and its regulatory complex were purified from rabbit reticulocytes for characterization of their nucleotidase properties. Both particles hydrolyze ATP, CTP, GTP, and UTP to the corresponding nucleoside diphosphate and inorganic phosphate. The K m values for hydrolysis of specific nucleotides by the 26 S proteasome are 15 M for ATP and CTP, 50 M for GTP, and 100 M for UTP; K m values for nucleotide hydrolysis by the regulatory complex are 2-4-fold higher for each nucleotide. Several ATPase inhibitors (erythro-9-[3-(2-hydroxynonyl)]adenine, oligomycin, ouabain, and thapsigargin) had no effect on ATP hydrolysis by either complex whereas known inhibitors of proteolysis by the 26 S enzyme (hemin, N-ethylmaleimide (NEM), and vanadate) significantly reduced ATP hydrolysis by both particles. Hydrolysis of all nucleotides was inhibited by 5 mM NEM but only GTP and UTP hydrolysis was significantly reduced at 50 M NEM. The 15 M K m for ATP hydrolysis by the 26 S proteasome is virtually identical to the observed K m of 12 M ATP for Ub-conjugate degradation. Although nucleotide hydrolysis is required for protein degradation by the 26 S proteasome, nucleotide hydrolysis and peptide bond cleavage are not strictly coupled. Substrate specificity constants (k cat /K m ) are similar for hydrolysis of each nucleotide, yet GTP and UTP barely supported Ub-conjugate degradation. Further evidence that nucleotide hydrolysis is not coupled to peptide bond cleavage was obtained using N-acetyl-leucyl-leucyl-norleucinal (LLnL). This compound inhibited peptide hydrolysis by the multicatalytic protease and Ub-conjugate degradation by the 26 S proteasome, but it had little effect on ATP or UTP hydrolysis by the 26 S enzyme.