Matrix M H5N1 Vaccine Induces Cross-H5 Clade Humoral Immune Responses in a Randomized Clinical Trial and Provides Protection from Highly Pathogenic Influenza Challenge in Ferrets (original) (raw)

Investigation of the biological indicator for vaccine efficacy against highly pathogenic avian influenza (HPAI) H5N1 virus challenge in mice and ferrets

Vaccine, 2009

To investigate the biological indicator for vaccine efficacy against HPAI H5N1 virus challenge of varying clades, two inactivated whole-virus H5N1 vaccines containing the hemagglutinin (HA) and neuraminidase (NA) genes of either clade 2.2 A/EM/Korea/W149/06 (RgKoreaW149/06xPR8) or clade 2.5 A/Ck/Korea/ES/03 (RgKoreaES223N/03XPR8) virus in the background of A/PR/8/34 (H1N1) were generated by reverse genetics. Administration of the vaccines (2-dose 1.77, 3.5, 7.5 or 15 g of HA) elicited high HI titers in a dose-dependent manner. Mice immunized with RgKoreaW149/06xPR8 were completely protected from challenge against wild-type A/EM/Korea/W149/06 without clinical signs of infection. RgKoreaES223N/03XPR8 could not protect mice at 1.77 g while all immunized ferrets were completely protected. Two-dose (7.5 g) vaccinated mice (HI titer ≥320) and triple dose (7.5 g) vaccinated ferrets with RgKoreaES223N/03xPR8 (HI titer ≥640) protected vaccine recipients from mortality, inhibited nasal virus shedding and limited influenza virus tropism. Thus, these vaccines provided cross-protectivity in both models. More importantly, these results collectively suggested a positive correlation between vaccine-induced HI titers and inhibition of virus shedding including block of viral proliferation in major organs against a heterologous HPAI H5N1 virus. Although developing technologies or methods that will enable the reduction of administration dose/frequency remains to be resolved, our study demonstrated a considerable biological marker (≥640 HI titer) for full protection of the vaccinated hosts that could provide a preliminary basis for the assessment of complete immunization.

Cross-Protection against Lethal H5N1 Challenge in Ferrets with an Adjuvanted Pandemic Influenza Vaccine

PLoS ONE, 2008

Background. Unprecedented spread between birds and mammals of highly pathogenic avian influenza viruses (HPAI) of the H5N1 subtype has resulted in hundreds of human infections with a high fatality rate. This has highlighted the urgent need for the development of H5N1 vaccines that can be produced rapidly and in sufficient quantities. Potential pandemic inactivated vaccines will ideally induce substantial intra-subtypic cross-protection in humans to warrant the option of use, either prior to or just after the start of a pandemic outbreak. In the present study, we evaluated a split H5N1 A/H5N1/Vietnam/1194/04, clade 1 candidate vaccine, adjuvanted with a proprietary oil-in-water emulsion based Adjuvant System proven to be well-tolerated and highly immunogenic in the human (Leroux-Roels et al. (2007) The Lancet 370:580-589), for its ability to induce intrasubtypic cross-protection against clade 2 H5N1/A/Indonesia/5/05 challenge in ferrets. Methodology and Principal Findings. All ferrets in control groups receiving non-adjuvanted vaccine or adjuvant alone failed to develop specific or cross-reactive neutralizing antibodies and all died or had to be euthanized within four days of virus challenge. Two doses of adjuvanted split H5N1 vaccine containing $1.7 mg HA induced neutralizing antibodies in the majority of ferrets to both clade 1 (17/23 (74%) responders) and clade 2 viruses (14/23 (61%) responders), and 96% (22/23) of vaccinees survived the lethal challenge. Furthermore lung virus loads and viral shedding in the upper respiratory tract were reduced in vaccinated animals relative to controls suggesting that vaccination might also confer a reduced risk of viral transmission. Conclusion. These protection data in a stringent challenge model in association with an excellent clinical profile highlight the potential of this adjuvanted H5N1 candidate vaccine as an effective tool in pandemic preparedness.

A Single Immunization with CoVaccine HT-Adjuvanted H5N1 Influenza Virus Vaccine Induces Protective Cellular and Humoral Immune Responses in Ferrets

Journal of Virology, 2010

Highly pathogenic avian influenza A viruses of the H5N1 subtype continue to circulate in poultry, and zoonotic transmissions are reported frequently. Since a pandemic caused by these highly pathogenic viruses is still feared, there is interest in the development of influenza A/H5N1 virus vaccines that can protect humans against infection, preferably after a single vaccination with a low dose of antigen. Here we describe the induction of humoral and cellular immune responses in ferrets after vaccination with a cell culture-derived whole inactivated influenza A virus vaccine in combination with the novel adjuvant CoVaccine HT. The addition of CoVaccine HT to the influenza A virus vaccine increased antibody responses to homologous and heterologous influenza A/H5N1 viruses and increased virus-specific cell-mediated immune responses. Ferrets vaccinated once with a whole-virus equivalent of 3.8 μg hemagglutinin (HA) and CoVaccine HT were protected against homologous challenge infection wi...

RESEARCH ARTICLE Matrix-M Adjuvated Seasonal Virosomal Influenza Vaccine Induces Partial Protection in Mice and Ferrets against Avian H5 and H7 Challenge

2016

There is a constant threat of zoonotic influenza viruses causing a pandemic outbreak in humans. It is virtually impossible to predict which virus strain will cause the next pandemic and it takes a considerable amount of time before a safe and effective vaccine will be available once a pandemic occurs. In addition, development of pandemic vaccines is hampered by the generally poor immunogenicity of avian influenza viruses in humans. An effective pre-pandemic vaccine is therefore required as a first line of defense. Broadening of the protective efficacy of current seasonal vaccines by adding an adjuvant may be a way to provide such first line of defense. Here we evaluate whether a seasonal trivalent virosomal vaccine (TVV) adjuvated with the saponin-based adjuvant Matrix-M (MM) can confer protection against avian influenza H5 and H7 virus strains in mice and ferrets. We demonstrate that mice were protected from death against challenges with H5N1 and H7N7, but that the protection was n...

Evaluation of Vaccines for H5N1 Influenza Virus in Ferrets Reveals the Potential for Protective Single-Shot Immunization

Journal of Virology, 2009

As part of influenza pandemic preparedness, policy decisions need to be made about how best to utilize vaccines once they are manufactured. Since H5N1 avian influenza virus has the potential to initiate the next human pandemic, isolates of this subtype have been used for the production and testing of prepandemic vaccines. Clinical trials of such vaccines indicate that two injections of preparations containing adjuvant will be required to induce protective immunity. However, this is a working assumption based on classical serological measures only. Examined here are the dose of viral hemagglutinin (HA) and the number of inoculations required for two different H5N1 vaccines to achieve protection in ferrets after lethal H5N1 challenge. Ferrets inoculated twice with 30 g of A/Vietnam/1194/2004 HA vaccine with AlPO 4 , or with doses as low as 3.8 g of HA with Iscomatrix (ISCOMATRIX, referred to as Iscomatrix herein, is a registered trademark of CSL Limited) adjuvant, were completely protected against death and disease after H5N1 challenge, and the protection lasted at least 15 months. Cross-clade protection was also observed with both vaccines. Significantly, complete protection against death could be achieved with only a single inoculation of H5N1 vaccine containing as little as 15 g of HA with AlPO 4 or 3.8 g of HA with Iscomatrix adjuvant. Ferrets vaccinated with the single-injection Iscomatrix vaccines showed fewer clinical manifestations of infection than those given AlPO 4 vaccines and remained highly active. Our data provide the first indication that in the event of a future influenza pandemic, effective mass vaccination may be achievable with a low-dose "single-shot" vaccine and provide not only increased survival but also significant reduction in disease severity.

H5N1 VLP vaccine induced protection in ferrets against lethal challenge with highly pathogenic H5N1 influenza viruses

Vaccine, 2008

In this study, recombinant virus-like particles (VLPs) were evaluated as a candidate vaccine against emerging influenza viruses with pandemic potential. The VLPs are composed of the hemagglutinin (HA), neuraminidase (NA), and matrix 1 (M1) proteins of the H5N1 A/Indonesia/05/2005 (clade 2.1; [Indo/05]) virus, which were expressed using baculovirus in Spodoptera frugiperda (Sf9) cells. Ferrets received either 2 injections of the VLP vaccine at escalating doses (based on HA content), recombinant HA, or were mock vaccinated. Vaccinated ferrets were then challenged with either H5N1 Indo/05 or H5N1 A/Viet Nam 1203/2004 (VN/04) wild-type viruses. All ferrets that received the VLP vaccine survived regardless of the VLP dose or challenge strain, whereas seven of eight mock vaccinated ferrets died. The VLP vaccine induced HAI antibodies against the homologous H5N1 clade 2.1 strain, as well as heterologous strains from H5N1 clades 1, 2.2, and 2.3. The magnitude of the HAI titers correlated with VLP dose. Neutralizing antibody responses against the Indo/05 and VN/04 strains showed a similar pattern. Affinity of the anti-HA antibodies raised by the H5N1 Indo/05 VLPs had a higher association rate to the homologous clade 2.1 HA than to the clade 1 (VN/04) HA; however, once bound, antibodies had similar slow disassociation rates. These results provide support for continued development of the H5N1 VLPs as a candidate vaccine against pandemic influenza. Exploration of immunologic correlates of protection for H5N1 vaccines beyond HAI and neutralizing antibody responses is warranted.

Matrix-M Adjuvated Seasonal Virosomal Influenza Vaccine Induces Partial Protection in Mice and Ferrets against Avian H5 and H7 Challenge

PloS one, 2015

There is a constant threat of zoonotic influenza viruses causing a pandemic outbreak in humans. It is virtually impossible to predict which virus strain will cause the next pandemic and it takes a considerable amount of time before a safe and effective vaccine will be available once a pandemic occurs. In addition, development of pandemic vaccines is hampered by the generally poor immunogenicity of avian influenza viruses in humans. An effective pre-pandemic vaccine is therefore required as a first line of defense. Broadening of the protective efficacy of current seasonal vaccines by adding an adjuvant may be a way to provide such first line of defense. Here we evaluate whether a seasonal trivalent virosomal vaccine (TVV) adjuvated with the saponin-based adjuvant Matrix-M (MM) can confer protection against avian influenza H5 and H7 virus strains in mice and ferrets. We demonstrate that mice were protected from death against challenges with H5N1 and H7N7, but that the protection was n...

Stockpiled pre-pandemic H5N1 influenza virus vaccines with AS03 adjuvant provide cross-protection from H5N2 clade 2.3.4.4 virus challenge in ferrets

Virology, 2017

Avian influenza viruses, notably H5 subtype viruses, pose a continuous threat to public health due to their pandemic potential. In recent years, influenza virus H5 subtype split vaccines with novel oil-in-water emulsion based adjuvants (e.g. AS03, MF59) have been shown to be safe, immunogenic, and able to induce broad immune responses in clinical trials, providing strong scientific support for vaccine stockpiling. However, whether such vaccines can provide protection from infection with emerging, antigenically distinct clades of H5 viruses has not been adequately addressed. Here, we selected two AS03-adjuvanted H5N1 vaccines from the US national pre-pandemic influenza vaccine stockpile and assessed whether the 2004-05 vaccines could provide protection against a 2014 highly pathogenic avian influenza (HPAI) H5N2 virus (A/northern pintail/Washington/40964/2014), a clade 2.3.4.4 virus responsible for mass culling of poultry in North America. Ferrets received two doses of adjuvanted vac...