Sorting of the Respiratory Syncytial Virus Matrix Protein into Detergent-Resistant Structures Is Dependent on Cell-Surface Expression of the Glycoproteins (original) (raw)
Related papers
Journal of General Virology, 1992
The intracellular processing and transport of the respiratory syncytial virus (RSV) fusion (F) glycoprotein was examined by comparing the maturation and stability of wild-type F, uncleaved mutant F and chimeric F glycoproteins expressed by recombinant vaccinia viruses to that of F protein expressed by RSV. One of the recombinant viruses, vF317, expressed F protein (F317) that was processed like the RSV F glycoprotein. F317 was synthesized initially as F0, the uncleaved glycosylated precursor of mature F protein, and formed stable oligomeric structures that were maintained following cleavage of F0 to form the disulphide bond-linked F1 and F2 subunits. Most of the newly synthesized F0 expressed by either RSV or by vF317 was sensitive to treatment with endoglycosidase H (Endo H). Following cleavage of F0, F1 was resistant to Endo H, suggesting that conversion to complex-type sugars, which takes place in the medial Golgi apparatus, occurred simultaneously with or immediately prior to cleavage of F0 into F1 and F2. Another recombinant virus, vF313, synthesized only uncleaved F protein (F313) that comigrated with F0. Uncleaved F313 was expressed as a stable glycosylated protein; however, unlike cleaved F317, its oligosaccharides were not modified to complex forms, as determined from its Endo H sensitivity, and uncleaved F313 did not assemble into stable oligomeric structures. Nucleotide sequence analysis of the cDNA clones encoding F313 and F317 revealed four predicted amino acid sequence differences, none of which were located at the cleavage site. Expression of chimeric F proteins obtained by restriction fragment exchange between the two cDNA clones indicated that two amino acid changes in the F1 domain, located at amino acid residues 301 (Val to Ala) and 447 (Val to Met), resulted in the expression of uncleaved F protein. A change at either of these two amino acid residues, 301 or 447, resulted in the expression of inefficiently cleaved F protein, defining an additional F protein phenotype. Pulse-chase analyses to examine the association of recombinant F glycoproteins with gradient-purified fractionated membranes or with GRP78-BiP, a protein resident in the endoplasmic reticulum (ER) which binds to nascent proteins, revealed that uncleaved F protein (F313) is associated with GRP78-BiP in the ER for a longer time than F317, and little if any F313 was transported to the cell surface. In addition, the uncleaved F protein (F313) was not recognized by a panel of F protein-specific monoclonal antibodies in ELISA or indirect immunofluorescence assays, suggesting that F313 was misfolded and, as a result, not transported properly or cleaved.
Virology, 2009
We examined the structure of lipid-raft membranes in respiratory syncytial virus infected cells. Cholesterol depletion studies using methyl-β-cyclodextrin suggested that membrane cholesterol was required for virus filament formation, but not inclusion bodies. In addition, virus filament formation coincided with elevated 3hydroxy-3-methylglutaryl-coenzyme A reductase expression, suggesting an increase in requirement for endogenous cholesterol synthesis during virus assembly. Lipid raft membranes were examined by mass spectrometry, which suggested that virus infection induced subtle changes in the lipid composition of these membrane structures. This analysis revealed increased levels of raft-associated phosphatidylinositol (PI) and phosphorylated PI during RSV infection, which correlated with the appearance of phosphatidylinositol 4,5bisphosphate and phosphatidylinositol 3,4,5-triphosphate (PIP 3) within virus inclusion bodies, and inhibiting the synthesis of PIP 3 impaired the formation of progeny virus. Collectively, our analysis suggests that RSV infection induces specific changes in the composition of raft-associated lipids, and that these changes play an important role in virus maturation.
Journal of Virology, 2003
To explore the association of the Newcastle disease virus (NDV) fusion (F) protein with cholesterol-rich membrane domains, its localization in detergent-resistant membranes (DRMs) in transfected cells was characterized. After solubilization of cells expressing the F protein with 1% Triton X-100 at 4°C, ca. 40% of total, cell-associated F protein fractionated with classical DRMs with densities of 1.07 to l.14 as defined by flotation into sucrose density gradients. Association of the F protein with this cell fraction was unaffected by the cleavage of F0 to F1 and F2 or by coexpression of the NDV attachment protein, the hemagglutinin-neuraminidase protein (HN). Furthermore, elimination by mutation, of potential palmitate addition sites in and near the F-protein transmembrane domain had no effect on F-protein association with DRMs. Rather, specific deletions of the cytoplasmic domain of the F protein eliminated association with classical DRMs. Comparisons of deletions that affected fusi...
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2011
Lipid membranes play a key role in the viral life cycle. Enveloped viruses particularly require a sequence of fusion and fission events between the viral envelope and the target membranes for entry into the cell and egress from it. These processes are controlled by one or more viral glycoproteins that undergo conformational changes favoring the necessary micro-and mesoscopic lipid re-arrangements. Multiple regions from these glycoproteins are thought to interact with the membranes, according to a concerted mechanism, in order to generate the distortion necessary for fusion. In this work, we perform an EPR study on the role played by the membrane composition in tuning the interaction between lipid bilayers and two peptides, gH626-644 and gB632-650, that are highly fusogenic fragments of the gH and gB glycoproteins of herpes simplex virus. Our results show that both peptides interact with lipid bilayers, perturbing the local lipid packing. gH626-644 localizes close to the hydrophilic bilayer surface, while gB632-650 penetrates deeply into the membrane. Chain perturbation by the peptides increases in the presence of charged phospholipids. Finally, cholesterol does not alter the ability of gB632-650 to penetrate deeply in the membrane, whereas it limits penetration of the gH626-644 peptide to the more external layer. The different modes of interaction result in a higher fusogenic ability of gB632-650 towards cholesterol-enriched membranes, as demonstrated by lipid mixing assays. These results suggest that the mechanism of action of the gH and gB glycoproteins is modulated by the properties and composition of the phospholipid bilayer. j o u r n a l h o m e p a g e : w w w. e l s ev i e r. c o m / l o c a t e / b b a m e m
Lipids as modulators of membrane fusion mediated by viral fusion proteins
European Biophysics Journal, 2007
Enveloped viruses infect host cells by fusion of viral and target membranes. This fusion event is triggered by speciWc glycoproteins in the viral envelope. Fusion glycoproteins belong to either class I, class II or the newly described third class, depending upon their arrangement at the surface of the virion, their tri-dimensional structure and the location within the protein of a short stretch of hydrophobic amino acids called the fusion peptide, which is able to induce the initial lipid destabilization at the onset of fusion. Viral fusion occurs either with the plasma membrane for pH-independent viruses, or with the endosomal membranes for pH-dependent viruses. Although, viral fusion proteins are parted in three classes and the subcellular localization of fusion might vary, these proteins have to act, in common, on lipid assemblies. Lipids contribute to fusion through their physical, mechanical and/or chemical properties. Lipids can thus play a role as chemically deWned entities, or through their preferential partitioning into membrane microdomains called "rafts", or by modulating the curvature of the membranes involved in the fusion process. The purpose of this review is to make a state of the art on recent Wndings on the contribution of cholesterol, sphingolipids and glycolipids in cell entry and membrane fusion of a number of viral families, whose members bear either class I or class II fusion proteins, or fusion proteins of the recently discovered third class.
Lipid rafts and host cell-pathogen interactions
tool to isolate raft-containing domains from cells. These domains have been differently called DRM, DIGS, GEMS, TIFF and can associate with specific proteins while excluding others. Proteins with raft affinity are glycosylphosphatidylinositol (GPI)-anchored proteins, 7 doubly acylated proteins such as the α-subunits of heterotrimeric G proteins and Src-family kinases, cholesterol-linked and palmitoylated proteins, and transmembrane proteins, in particular the ones carrying palmitoylation motifs (for review see ref. 6). These proteins can transiently associate with rafts, which modulate their function.