No Evidence of Enemy Release in Pathogen and Microbial Communities of Common Wasps (Vespula vulgaris) in Their Native and Introduced Range (original) (raw)
Related papers
Ecological Entomology, 2019
1. Variation in microbial communities between populations is increasingly hypothesised to affect animal fitness and performance, including for invasive species. Pathogenic species may be lost during the introduction process, enhancing invader fitness and abundance. 2. This study assessed fitness, immune gene expression, and microbial network complexity of invasive common wasps, Vespula vulgaris. Microbial networks were assayed using 16S and 18S sequencing and gene expression arrays in the native (Belgium) and introduced range (New Zealand). The immune gene expression of the wasp Down syndrome cell adhesion molecule (Dscam) gene homologue was examined. Dscam expression can be induced by viruses, Gram-positive and Gram-negative bacteria, and parasites. 3. Individual nest fitness was higher in the native range of Belgium than in the introduced New Zealand range. Microbial communities of wasps in the introduced range were more diverse with more complex networks, although some microorganisms were range-specific. Microbial networks in the introduced range showed higher clustering coefficients, number of connected paths, network centralisation, number of neighbours and network density. 4. Larvae, workers, virgin and foundress queens had higher expression of Dscam in the New Zealand samples. These immune gene expression patterns were associated with higher pathogen pressure and lower relative fitness. 5. Epidemiological theory predicts that a high density of pathogen and microbial hosts should result in a high rate of disease infection, prevalence, and highly connected microbial networks. The results of this study support these predictions. Wasps displayed lower relative fitness and more highly connected microbial networks in New Zealand than in Belgium.
PLOS ONE, 2018
Social wasps are a major pest in many countries around the world. Pathogens may influence wasp populations and could provide an option for population management via biological control. We investigated the pathology of nests of apparently healthy common wasps, Vespula vulgaris, with nests apparently suffering disease. First, next-generation sequencing and metatranscriptomic analysis were used to examine pathogen presence. The transcriptome of healthy and diseased V. vulgaris showed 27 known microbial phylotypes. Four of these were observed in diseased larvae alone (Aspergillus fumigatus, Moellerella wisconsensis, Moku virus, and the microsporidian Vavraia culicis). Kashmir Bee Virus (KBV) was found to be present in both healthy and diseased larvae. Moellerella wisconsensis is a human pathogen that was potentially misidentified in our wasps by the MEGAN analysis: it is more likely to be the related bacteria Hafnia alvei that is known to infect social insects. The closest identification to the putative pathogen identified as Vavraia culicis was likely to be another microsporidian Nosema vulgaris. PCR and subsequent Sanger sequencing using published or our own designed primers, confirmed the identity of Moellerella sp. (which may be Hafnia alvei), Aspergillus sp., KBV, Moku virus and Nosema. Secondly, we used an infection study by homogenising diseased wasp larvae and feeding them to entire nests of larvae in the laboratory. Three nests transinfected with diseased larvae all died within 19 days. No pathogen that we monitored, however, had a significantly higher prevalence in diseased than in healthy larvae. RT-qPCR analysis indicated that pathogen infections were significantly correlated, such as between KBV and Aspergillus sp. Social wasps clearly suffer from an array of pathogens, which may lead to the collapse of nests and larval death.
Scientific Reports, 2021
Invasive species contribute to deteriorate the health of ecosystems due to their direct effects on native fauna and the local parasite-host dynamics. We studied the potential impact of the invasive hornet Vespa velutina on the European parasite-host system by comparing the patterns of diversity and abundance of pathogens (i.e. Microsporidia: Nosematidae; Euglenozoa: Trypanosomatidae and Apicomplexa: Lipotrophidae) in European V. velutina specimens with those in the native European hornet Vespa crabro, as well as other common Hymenoptera (genera Vespula, Polistes and Bombus). We show that (i) V. velutina harbours most common hymenopteran enteropathogens as well as several new parasitic taxa. (ii) Parasite diversity in V. velutina is most similar to that of V. crabro. (iii) No unambiguous evidence of pathogen release by V. velutina was detected. This evidence together with the extraordinary population densities that V. velutina reaches in Europe (around of 100,000 individuals per km2 ...
High-Quality Assemblies for Three Invasive Social Wasps from the Vespula Genus
G3: Genes|Genomes|Genetics, 2020
Social wasps of the genus Vespula have spread to nearly all landmasses worldwide and have become significant pests in their introduced ranges, affecting economies and biodiversity. Comprehensive genome assemblies and annotations for these species are required to develop the next generation of control strategies and monitor existing chemical control. We sequenced and annotated the genomes of the common wasp (Vespula vulgaris), German wasp (Vespula germanica), and the western yellowjacket (Vespula pensylvanica). Our chromosome-level Vespula assemblies each contain 176-179 Mb of total sequence assembled into 25 scaffolds, with 10-200 unanchored scaffolds, and 16,566-18,948 genes. We annotated gene sets relevant to the applied management of invasive wasp populations, including genes associated with spermatogenesis and development, pesticide resistance, olfactory receptors, immunity and venom. These genomes provide evidence for active DNA methylation in Vespidae and tandem duplications o...
Insects
Two species of entomogenous fungi were discovered infecting the invasive paper wasp Polistes chinensis during an ecological study on Farewell Spit, New Zealand. We sequenced two nuclear ribosomal RDNA genes, the internal transcribed spacer (ITS) and the small ribosomal subunit 18S, and one protein-coding gene, the translation elongation factor 1-alpha (ef1 α). Combining sequence information with morphological examination, we identified these species as Beauveria malawiensis and Ophiocordyceps humbertii. We estimated that these fungi produce infection in approximately 3.3% of colonies in our study population. In bioassays, we successfully infected P. chinensis individuals from healthy colonies with B. malawiensis, with significant effects on adult mortality. This is the first record of both B. malawiensis and O. humbertii from Polistine hosts in New Zealand, and the first investigation into disease causality by these pathogens in P. chinensis. Our findings may contribute to the futur...
2004
Abstract In newly invaded communities, interspecific competition is thought to play an important role in determining the success of the invader and its impact on the native community. In southern Australia, the native Polistes humilis was the predominant social wasp prior to the arrival of the exotic Vespula germanica (Hymenoptera: Vespidae). Both species forage for similar resources (water, pulp, carbohydrate and protein prey), and concerns have arisen about potential competition between them. The aim of this study was to identify the protein foods that these wasps feed on. As many prey items are masticated by these wasps to the degree that they cannot be identified using conventional means, morphological identification was complemented by sequencing fragments of the mitochondrial 16S rRNA gene. GenBank searches using blast and phylogenetic analyses were used to identify prey items to at least order level. The results were used to construct complete prey inventories for the two species. These indicate that while P. humilis is restricted to feeding on lepidopteran larvae, V. germanica collects a variety of prey of invertebrate and vertebrate origin. Calculated values of prey overlap between the two species are used to discuss the implications of V. germanica impacting on P. humilis. Results obtained are compared to those gained by solely 'conventional' methods, and the advantages of using DNA-based taxonomy in ecological studies are emphasized.
Journal of Insect Conservation
Invasive alien species could generate a multitude of impacts towards native species. The introduction and spread of Vespa velutina in Europe is raising concern for the conservation of insect’s biodiversity, including wasps due to predation, competition or a combination of these two mechanisms. Nevertheless, most evidence for negative effects on other wasps are based on laboratory experiments, direct observations, and on considerations about the biology and ecology of Vespidae. No field study in Europe explored how the abundance of V. velutina could affect the population of native Vespidae, as expected in case of competition and predation. We analysed how the abundance of V. velutina influenced that of Vespa crabro, 4 years after the arrival and establishment of V. velutina in our study area, in Italy. Moreover, we compared the abundances of three native Vespidae (V. crabro, Vespula vulgaris, Vespula germanica), between our study area and an adjacent uninvaded area with similar envir...