Evidence for a functional glycogen metabolism in mature mammalian spermatozoa (original) (raw)

Gluconeogenesis-Linked Glycogen Metabolism Is Important in the Achievement of In Vitro Capacitation of Dog Spermatozoa in a Medium Without Glucose1

Biology of Reproduction, 2004

In vitro capacitation of dog spermatozoa in a medium without sugars and with lactate as the metabolic substrate (l-CCM) was accompanied by a progressive increase of intracellular glycogen during the first 2 h of incubation, which was followed by a subsequent decrease of glycogen levels after up to 4 h of incubation. Lactate from the medium is the source for the observed glycogen synthesis, as the presence of [ 14 C]glycogen after the addition to l-CCM with [ 14 C]lactate was demonstrated. The existence of functional gluconeogenesis in dog sperm was also sustained by the presence of key enzymes of this metabolic pathway, such as fructose 1,6-bisphophatase and aldolase B. On the other hand, glycogen metabolism from gluconeogenic sources was important in the maintenance of a correct in vitro fertilization after incubation in the l-CCM. This was demonstrated after the addition of phenylacetic acid (PAA) to l-CCM. In the presence of PAA, in vitro capacitation of dog spermatozoa suffered alterations, which translated into changes in capacitation functional markers, like the increase in the percentage of altered acrosomes, a distinct motion pattern, decrease or even disappearance of capacitation-induced tyrosine phosphorylation, and increased heterogeneity of the chlorotetracycline pattern in capacitated cells. Thus, this is the first report indicating the existence of a functional glyconeogenesis in mammalian spermatozoa. Moreover, gluconeogenesis-linked glycogen metabolism seems to be of importance in the maintenance of a correct in vitro capacitation in dog sperm in the absence of hexoses in the medium.

Differential effects of glucose and fructose on hexose metabolism in dog spermatozoa

Reproduction, 2002

Incubation of dog spermatozoa with 10 mmol l -1 glucose or fructose rapidly increased the intracellular content of glucose 6-phosphate and fructose 6-phosphate, although the effect of fructose was greater. These effects were correlated with increases in ATP, ribose 5-phosphate and glycogen contents, and in the rates of formation of Llactate and CO 2 . In all cases, except for ATP and glycogen, the effect of fructose was greater than that of glucose. The total hexokinase activity of the crude extracts of dog spermatozoa was more sensitive to fructose than to glucose at lower concentrations (0.1-3.0 mmol l -1 ). Both monosaccharides induced a fast and intense increase in the overall tyrosine phosphorylation of dog spermatozoa, although their specific induced-phosphorylation patterns differed slightly. Glut 3 and Glut 5 hexose transporters were the main hexose transporters in dog spermatozoa; however, other possible SGLT family-related hexose transporters were also localized. These data indicate that, at concentrations from 1 mmol l -1 to 10 mmol l -1 , fructose has a stronger effect than glucose on hexose metabolism of dog spermatozoa. These differences appear to be related to variations in the sensitivity of hexokinase activity. Moreover, the differential hexose metabolism induced by the two sugars had distinct effects on the function of dog spermatozoa, as revealed by the diverse patterns of tyrosine phosphorylation.

Glycolytic Enzyme Activity Is Essential for Domestic Cat (Felis catus) and Cheetah (Acinonyx jubatus) Sperm Motility and Viability in a Sugar-Free Medium

Biology of Reproduction, 2011

We have previously reported a lack of glucose uptake in domestic cat and cheetah spermatozoa, despite observing that these cells produce lactate at rates that correlate positively with sperm function. To elucidate the role of glycolysis in felid sperm energy production, we conducted a comparative study in the domestic cat and cheetah, with the hypothesis that sperm motility and viability are maintained in both species in the absence of glycolytic metabolism and are fueled by endogenous substrates. Washed ejaculates were incubated in chemically defined medium in the presence/absence of glucose and pyruvate. A second set of ejaculates was exposed to a chemical inhibitor of either lactate dehydrogenase (sodium oxamate) or glyceraldehyde-3-phosphate dehydrogenase (alpha-chlorohydrin). Sperm function (motility and acrosomal integrity) and lactate production were assessed, and a subset of spermatozoa was assayed for intracellular glycogen. In both the cat and cheetah, sperm function was maintained without exogenous substrates and following lactate dehydrogenase inhibition. Lactate production occurred in the absence of exogenous hexoses, but only if pyruvate was present. Intracellular glycogen was not detected in spermatozoa from either species. Unexpectedly, glycolytic inhibition by alpha-chlorohydrin resulted in an immediate decline in sperm motility, particularly in the domestic cat. Collectively, our findings reveal an essential role of the glycolytic pathway in felid spermatozoa that is unrelated to hexose metabolism or lactate formation. Instead, glycolytic enzyme activity could be required for the metabolism of endogenous lipid-derived glycerol, with fatty acid oxidation providing the primary energy source in felid spermatozoa.

Glycolytic Enzyme Activity Is Essential for Domestic Cat (Felis catus) and Cheetah (Acinonyx jubatus) Sperm Motility and Viability in a Sugar-Free Medium1

Biology of Reproduction, 2011

We have previously reported a lack of glucose uptake in domestic cat and cheetah spermatozoa, despite observing that these cells produce lactate at rates that correlate positively with sperm function. To elucidate the role of glycolysis in felid sperm energy production, we conducted a comparative study in the domestic cat and cheetah, with the hypothesis that sperm motility and viability are maintained in both species in the absence of glycolytic metabolism and are fueled by endogenous substrates. Washed ejaculates were incubated in chemically defined medium in the presence/absence of glucose and pyruvate. A second set of ejaculates was exposed to a chemical inhibitor of either lactate dehydrogenase (sodium oxamate) or glyceraldehyde-3-phosphate dehydrogenase (alpha-chlorohydrin). Sperm function (motility and acrosomal integrity) and lactate production were assessed, and a subset of spermatozoa was assayed for intracellular glycogen. In both the cat and cheetah, sperm function was maintained without exogenous substrates and following lactate dehydrogenase inhibition. Lactate production occurred in the absence of exogenous hexoses, but only if pyruvate was present. Intracellular glycogen was not detected in spermatozoa from either species. Unexpectedly, glycolytic inhibition by alpha-chlorohydrin resulted in an immediate decline in sperm motility, particularly in the domestic cat. Collectively, our findings reveal an essential role of the glycolytic pathway in felid spermatozoa that is unrelated to hexose metabolism or lactate formation. Instead, glycolytic enzyme activity could be required for the metabolism of endogenous lipid-derived glycerol, with fatty acid oxidation providing the primary energy source in felid spermatozoa.

Changes in Activities of Glucose Metabolising Enzymes in Germ Cells during Spermatogenesis in Rats. (glucose-6-phosphate dehydrogenase/germ cells/spermatogenesis/rat)

Development, Growth and Differentiation, 1983

The rate of I4CO, liberation from ['4C-l]glucose was identical to that from ['4C-6]glucose in spermatids, but more than the latter in spermatogonia. Rotenone (1 pM) completely inhibited '*CO, release from ['4C-l]glucose in spermatids, but decreased it only 30% in spermatogonia. The activity of glucose-6-phosphate dehydrogenase, but not 6-phosphogluconate dehydrogenase, was markedly lower in spermatocytes and spermatids than in spermatogonia. The activities of the glycolytic enzymes, glucosephosphate isomerase, fructose diphosphatase, glyceraldehyde-3-phosphate dehydrogenase and enolase, differed only slightly in spermatids and spermatogonia. It is concluded that the low glucose-6-phosphate dehydrogenase activity may contribute to the low activity of the pentose cycle in spermatocytes and spermatids.

Investigating the Glycating Effects of Glucose, Glyoxal and Methylglyoxal on Human Sperm

Scientific reports, 2018

Glycation is the non-enzymatic reaction between reducing sugars, such as glucose, and proteins, lipids or nucleic acids, producing Advanced Glycation End (AGE) products. AGEs, produced during natural senescence as well as through lifestyle factors such as diet and smoking, are key pathogenic compounds in the initiation and progression of diabetes. Importantly, many of these factors and conditions also have influence on male fertility, affecting sperm count and semen quality, contributing to the decreasing trend in male fertility. This study investigated the impact of AGEs on sperm damage. In vitro sperm glycation assays were used to determine the levels and localization of the potent AGE compound, carboxymethyl-lysine (CML) in response to treatment with the glycating compounds glucose, glyoxal and methylglyoxal. Sperm function assays were then used to assess the effects of glycation on motility and hyaluronan binding, and levels of oxidative DNA damage were analyzed through measurem...

Changes in rat sperm membrane glycosidase activities and carbohydrate and protein contents associated with epididymal transit

Biology of Reproduction, 1987

Rat spermatozoa were recovered from the cap Ut, Corp US, and cauda epididymides and assayed for glycosidase activity, total nonamino (neutral) carbohydrate, and protein content. The activities of 13-glucosidase, #{216}-galactosidase, 13-N-acetylglucosaminidase, and 13-N-acetylgalactosaminidase were fluorometrically assayed in spermatozoa and membrane-enriched fractions. Except for j3-glucosidase, the activities of the glycosidases based on protein content were greatest in whole sperm and membrane-enriched fractions obtained from the cauda epididymides. Based on sperm concentration, however, glycosidase activities increased proceeding from the caput to the corpus epididymides, then declined from the corpus to the cauda epididymides. Analyses of nonamino carbohydrate and protein content based on sperm number indicated regional trends similar to those of glycosidase activity. Total nonamino carbohydrate and protein content were highest in corpus sperm, and lowest in cauda sperm. These data indicate major quantitative changes in cell surface carbohydrate as spermatozoa traverse the epididymis. A positive correlation for the membrane-enriched fraction between increasing glycosidase activity and decreasing carbohydrate and protein content suggests that glycosidases may play a significant role in modifying the spermatozoon surface during epididymal transit and maturation.

Characterization of Glycolysis and Pentose Phosphate Pathway Activity during Sperm Entry into the Mouse Oocyte1

Biology of Reproduction, 1999

Studying the events that occur during gamete fusion and sperm decondensation in the oocyte remains difficult because sperm-oocyte fusion and subsequent sperm decondensation represent a short part of the fertilization process, and their exact timing is difficult to determine. There is therefore a need for greater understanding of the events that occur during this period. The main purpose of this study was to examine the metabolic aspects of this time frame by characterizing glucose metabolism (glycolytic and pentose phosphate pathway [PPP] activities) during sperm fusion and decondensation into zona-free oocytes in mice. The metabolism of glucose through both glycolysis and the PPP was measured in ovulated MII oocytes, free of cumulus cells, and the levels of glucose metabolized were found to be low. Upon sperm entry, both glycolytic and PPP activity increased substantially. To determine whether this elevation in glucose metabolism was part of the activation process, the metabolism of parthenogenetically activated oocytes was measured, and no increase in metabolism was observed. The characterization of glucose metabolism during sperm fusion and decondensation into the oocyte, and comparison to parthenogenetically activated oocytes, showed that the fertilizing sperm is responsible for an increase in both glycolytic and PPP activity during fusion and/or decondensation. The significance of this observation during the fertilization process and for the developing embryo is as yet unclear and warrants further investigation.