Characterization of a Conditional bosR Mutant in Borrelia burgdorferi (original) (raw)

Transcriptional profiling of Borrelia burgdorferi containing a unique bosR allele identifies a putative oxidative stress regulon

Microbiology (Reading, England), 2006

Borrelia burgdorferi regulates gene expression in response to environmental conditions, including temperature, pH, redox potential and host factors. B. burgdorferi encodes a PerR homologue designated BosR, which presumably serves as a global regulator of genes involved in the oxidative stress response. Infectious B. burgdorferi strain B31 is resistant to oxidative stressors in vitro, whereas the non-infectious isolate was sensitive due, in part, to a point mutation that converts an arginine to a lysine at residue 39 of BosR. Subsequent insertional inactivation of this bosRR39K allele (bosRR39K : : kan(R)) restored resistance to oxidative stressors. These observations suggest that the B. burgdorferi non-infectious bosRR39K : : kan(R) strain may transcribe genes that are also expressed in infectious B. burgdorferi cells, but are repressed in the bosRR39K background, thus explaining the different oxidative stress phenotypes observed between these isolates. To test this hypothesis, macr...

A conservative amino acid change alters the function of BosR, the redox regulator of Borrelia burgdorferi

Molecular Microbiology, 2004

Borrelia burgdorferi , the aetiologic agent of Lyme disease, modulates gene expression in response to changes imposed by its arthropod vector and mammalian hosts. As reactive oxygen species (ROS) are known to vary in these environments, we asked how B. burgdorferi responds to oxidative stress. The B. burgdorferi genome encodes a PerR homologue (recently designated BosR) that represses the oxidative stress response in other bacteria, suggesting a similar function in B. burgdorferi . When we tested the sensitivity of B. burgdorferi to ROS, one clonal non-infectious B. burgdorferi isolate exhibited hypersensitivity to t -butyl hydroperoxide when compared with infectious B. burgdorferi and other non-infectious isolates. Sequence analysis indicated that the hypersensitive non-infectious isolates bosR allele contained a single nucleotide substitution, converting an arginine to a lysine ( bosRR39K ). Mutants in bosRR39K exhibited an increase in resistance to oxidative stressors when compared with the parental non-infectious strain, suggesting that BosRR39K functioned as a repressor. Complementation with bosRR39K and bosR resulted in differential sensitivity to t -butyl hydroperoxide, indicating that these alleles are functionally distinct. In contrast to BosR, BosRR39K did not activate transcription of a napA promoter-lacZ reporter in Escherichia coli nor bind the napA promoter/operator domain. However, we found that both BosR and BosRR39K bound to the putative promoter/operator region of superoxide dismutase ( sodA ). In addition, we determined that cells lacking BosRR39K synthesized fourfold greater levels of the decorin binding adhesin DbpA suggesting that BosRR39K regulates genes unrelated to oxidative stress. Based on these data, we propose that the single amino acid substitution, R39K, dramatically alters the activity of BosR by altering its ability to bind DNA at target regulatory sequences.

BosR (BB0647) governs virulence expression in Borrelia burgdorferi

Molecular Microbiology, 2000

Borrelia burgdorferi (Bb), the Lyme disease spirochaete, encodes a potential ferric uptake regulator (Fur) homologue, BosR (BB0647). Thus far, a role for BosR in Bb metabolism, gene regulation or pathogenesis has not been determined, largely due to the heretofore inability to inactivate bosR in low-passage, infectious Bb isolates. Herein, we report the generation of the first bosR-deficient mutant in a virulent strain of Bb. Whereas the bosR mutant persisted normally in ticks, the mutant was unable to infect mice, indicating that BosR is essential for Bb infection of a mammalian host. Moreover, transcriptional profiling of the bosR mutant showed that a number of genes were either positively or negatively influenced by BosR deficiency, suggesting that BosR may function both as a global repressor and activator in Bb. Strikingly, our study showed that BosR controls the expression of two major virulence-associated Bb lipoproteins, OspC and DbpA, likely via an influence on the alternative sigma factor, RpoS. This study thus not only has elucidated another key virulence gene of Bb, but also provides new insights into a previously unknown layer of gene regulation governing RpoS in Bb.

Transcriptional analysis of a superoxide dismutase gene of Borrelia burgdorferi

Fems Microbiology Letters, 2000

A single superoxide dismutase (Sod) gene was identified in Borrelia burgdorferi strains, Borrelia afzelii Ple and Borrelia garinii Pbi. Recombinant enzymatic activity was detected only when sod expression was controlled by the lacZ promoter in the cloning vector. Northern blot analysis with sod- or secA-specific probes identified a common 3.7-kb transcript. Reverse transcriptase-PCR analysis confirmed that secA and sod constitute a single transcriptional unit in B. burgdorferi. A transcriptional start site of this operon, containing −10 and −35 regions of a σ70-type promoter, was mapped to 100 bp upstream of the ATG start codon of secA.

Borrelia burgdorferioxidative stress regulator BosR directly represses lipoproteins primarily expressed in the tick during mammalian infection

Molecular Microbiology, 2013

Differential gene expression is a key strategy adopted by the Lyme disease spirochaete, Borrelia burgdorferi, for adaptation and survival in the mammalian host and the tick vector. Many B. burgdorferi surface lipoproteins fall into two distinct groups according to their expression patterns: one group primarily expressed in the tick and the other group primarily expressed in the mammal. Here, we show that the Fur homologue in this bacterium, also known as Borrelia oxidative stress regulator (BosR), is required for repression of outer surface protein A (OspA) and OspD in the mammal. Furthermore, BosR binds directly to sequences upstream of the ospAB operon and the ospD gene through recognition of palindromic motifs similar to those recognized by other Fur homologues but with a 1-bp variation in the spacer length. Putative BosR-binding sites have been identified upstream of 156 B. burgdorferi genes. Some of these genes share the same expression pattern as ospA and ospD. Most notably, 12 (67%) of the 18 genes previously identified in a genome-wide microarray study to be most significantly repressed in the mammal are among the putative BosR regulon. These data indicate that BosR may directly repress transcription of many genes that are down-regulated in the mammal.

Absence of sodA Increases the Levels of Oxidation of Key Metabolic Determinants of Borrelia burgdorferi

PloS one, 2015

Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to environmental signals unique to its tick vector or vertebrate hosts. B. burgdorferi carries one superoxide dismutase gene (sodA) capable of controlling intracellular superoxide levels. Previously, sodA was shown to be essential for infection of B. burgdorferi in the C3H/HeN model of Lyme disease. We employed two-dimensional electrophoresis (2-DE) and immunoblot analysis with antibodies specific to carbonylated proteins to identify targets that were differentially oxidized in the soluble fractions of the sodA mutant compared to its isogenic parental control strain following treatment with an endogenous superoxide generator, methyl viologen (MV, paraquat). HPLC-ESI-MS/MS analysis of oxidized proteins revealed that several proteins of the glycolytic pathway (BB0057, BB0020, BB0348) exhibited increased carbonylation in the sodA mutant treated with MV. Levels of ATP and NAD/NADH were redu...

Borrelia burgdorferi Surface-Localized Proteins Expressed during Persistent Murine Infection Are Conserved among Diverse Borrelia spp

Infection and Immunity, 2008

Borrelia burgdorferi, the causative agent of Lyme disease in the United States, regulates numerous genes encoding lipoproteins on linear plasmid 54 in response to environmental cues. We analyzed a subset of these genes/proteins that were historically categorized as paralogous gene family 54 (BBA64, BBA65, BBA66, BBA68, BBA69, BBA70, BBA71, and BBA73) and found that the expression of several genes was influenced by the N -S regulatory cascade at the level of transcription and protein synthesis. Moreover, we established in this and a previous study that BBA65, BBA66, BBA69, BBA71, and BBA73 are temporally expressed during persistent infection of immunocompetent mice, as determined by quantitative real time-PCR of ear tissue, by enzyme-linked immunosorbent assay, and by immunoblotting. Correspondingly, BBA65, BBA66, BBA71, and BBA73 proteins were detectable in infectious B. burgdorferi B31 isolates but undetectable in noninfectious isolates. BBA65, BBA66, BBA71, and BBA73 proteins were also found to partition into the Triton X-114 detergent phase and were sensitive to protease treatment of intact cells, indicating that they are membrane associated and surface localized. Lastly, Southern blotting and PCR with specific gene primer/probes for BBA64, BBA65, BBA66, BBA71, and BBA73 suggest that many of these genes are conserved among the B. burgdorferi sensu lato isolates and the relapsing-fever Borrelia species. Together, the data presented suggest that these genes may play a part in Borrelia infection and/or pathogenicity that could extend beyond the sensu lato group.

Overexpression of CsrA (BB0184) Alters the Morphology and Antigen Profiles of Borrelia burgdorferi

Infection and Immunity, 2009

Borrelia burgdorferi, the agent of Lyme disease, alters its gene expression in response to highly disparate environmental signals encountered in its hosts. Among the relatively few regulators of adaptive gene expression present in the borrelial genome is an open reading frame (ORF), BB0184, annotated as CsrA (carbon storage regulator A). CsrA, in several bacterial species, has been characterized as a small RNA binding protein that functions as a global regulator affecting mRNA stability or levels of translation of multiple ORFs. Consistent with known functions of CsrA, overexpression of CsrA from B. burgdorferi (CsrA Bb ) in Escherichia coli resulted in reduced accumulation of glycogen. We determined that csrA Bb is part of the flgK motility operon and that the synthesis of CsrA Bb was increased when B. burgdorferi was propagated under fed-tick conditions. Overexpression of CsrA Bb in B. burgdorferi strain B31 (ML23, lp25-negative clonal isolate) resulted in a clone, designated ES25, which exhibited alterations in colony morphology and a significant reduction in the levels of FlaB. Several lipoproteins previously characterized as playing a role in infectivity were also altered in ES25. Real-time reverse transcription-PCR analysis of RNA revealed significant differences in the transcriptional levels of ospC in ES25, while there were no such differences in the levels of other transcripts, suggesting posttranscriptional regulation of expression of these latter genes. These observations indicate that CsrA Bb plays a role in the regulation of expression of pathophysiological determinants of B. burgdorferi, and further characterization of CsrA Bb will help in better understanding of the regulators of gene expression in B. burgdorferi.

The many faces of Borrelia burgdorferi

Journal of molecular microbiology and biotechnology, 2000

In this review we describe several genetic regulatory mechanisms adopted by the agent of Lyme disease, Borrelia burgdorferi, to sense and adapt to different host and environmental conditions either in vitro or in vivo. This regulation results in the increased or decreased synthesis of several proteins whose levels are believed to play key roles in the ability of B. burgdorferi to cycle between both arthropod and mammalian hosts. Moreover, the differential synthesis of these proteins serves to modulate the response of B. burgdorferito signals in the requisite host and may also, in some cases, function as virulence determinants of this spirochete. Elucidation of these mechanisms will help in the understanding of the pathogenicity of B. burgdorferi as well as aid in identifying proteins that are important during different stages of infection.