Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour (original) (raw)

Ligand modulation of REV-ERB function resets the peripheral circadian clock in a phasic manner

Journal of Cell Science, 2008

The nuclear receptor REV-ERBα is a key negative-feedback regulator of the biological clock. REV-ERBα binds to ROR elements of the Bmal1 (Arntl) promoter and represses Bmal1 transcription. This stabilizing negative loop is important for precise control of the circadian pacemaker. In the present study, we identified a novel synthetic REV-ERBα ligand, which enhances the recruitment of nuclear receptor co-repressor (NCoR) to REV-ERBα. In order to explore REV-ERBα action on resetting responses of the molecular clock, we first established the rhythmic transcription profile and expression level of REV-ERBα in Rat-1 fibroblasts. When applied at different phases of the circadian oscillation to cell models containing stably transfected Bmal1::Luc or Per2::Luc, the REV-ERBα ligand induced phase-dependent bi-directional phase shifts. When the phase changes were plotted against time, a clear phase response curve was revealed, with a significant peak-to-trough amplitude of ca. 5 hours. The phase-resetting effect was also observed when the compound was applied to primary lung fibroblasts and ectopic lung slices from transgenic PER2::Luc mice. Therefore, similar regulation of REV-ERBα function by endogenous ligands, such as heme, is likely to be an important mechanism for clock resetting. In addition, we identify a new means to generate phasic shifts in the clock.

Expression of the clock gene Rev-erbα in the brain controls the circadian organisation of food intake and locomotor activity, but not daily variations of energy metabolism

Journal of Neuroendocrinology, 2018

The nuclear receptor REV-ERBα is part of the molecular clock mechanism and is considered to be involved in a variety of biological processes within metabolically active peripheral tissues as well. To investigate whether Rev-erbα (also known as Nr1d1) in the brain plays a role in the daily variations of energy metabolism, feeding behaviour and the sleep-wake cycle, we studied mice with global (GKO) or brain (BKO) deletion of Rev-erbα. Mice were studied both in a light/dark cycle and in constant darkness, and then 24-hour variations of Respiratory quotient (RQ) and energy expenditure, as well as the temporal patterns of rest-activity and feeding behaviour, were recorded. The RQ increase of GKO mice was not detected in BKO animals, indicating a peripheral origin for this metabolic alteration. Arrhythmic patterns of locomotor activity were only found in BKO mice. By contrast, the circadian rhythm of food intake was lost both in GKO and BKO mice, mostly by increasing the number of daytime meals. These changes in the circadian pattern of feeding behaviour were, to some extent, correlated with a loss of rhythmicity of hypothalamic Hcrt (also named Orx) mRNA levels. Taken together, these findings highlight that Rev-erbα in the brain is involved in the temporal partitioning of feeding and sleep, whereas its effects on energy metabolism are mainly exerted through its peripheral expression.

The orphan receptor Rev-erb gene is a target of the circadian clock pacemaker

Journal of Molecular Endocrinology, 2004

Rev-erb is a ubiquitously expressed orphan nuclear receptor which functions as a constitutive transcriptional repressor and is expressed in vertebrates according to a robust circadian rhythm. We report here that two Rev-erb mRNA isoforms, namely Rev-erb 1 and Rev-erb 2, are generated through alternative promoter usage and that both show a circadian expression pattern in an in vitro system using serum-shocked fibroblasts. Both promoter regions P1 (Rev-erb 1) and P2 (Rev-erb 2) contain several E-box DNA sequences which function as response elements for the core circadian-clock components: CLOCK and BMAL1. The CLOCK-BMAL1 heterodimer stimulates the activity of both P1 and P2 promoters in transient transfection assay by 3-6-fold. This activation was inhibited by the overexpression of CRY1, a component of the negative limb of the circadian transcriptional loop. Critical E-box elements were mapped within both promoters. This regulation is conserved in vertebrates since we found that the CLOCK-BMAL1 heterodimer also regulates the zebrafish Rev-erb gene. In line with these data Rev-erb circadian expression was strongly impaired in the livers of Clock mutant mice and in the pineal glands of zebrafish embryos treated with Clock and Bmal1 antisense oligonucleotides. Together these data demonstrate that CLOCK is a critical regulator of Rev-erb circadian gene expression in evolutionarily distant vertebrates and suggest a role for Rev-erb in the circadian clock output.

Acute administration of the novel serotonin and noradrenaline reuptake inhibitor, S33005, markedly modifies sleep–wake cycle architecture in the rat

Psychopharmacology, 2005

The interrelationship between depressive states and sleep-wake cycle architecture is characterised by a decreased latency to the first paradoxical sleep (PS) episode, together with an enhancement of PS during the first part of the night. Conversely, slow-wave sleep (SWS) is decreased and intermittent awakenings increased. Notably, antidepressant treatment is generally associated with a diminution of PS. In light of these observations, we examined the influence of acute administration of the novel mixed serotonin-noradrenaline reuptake blocker, (-)1-(1-dimethylaminomethyl 5-methoxybenzocyclobutan-1-yl)-cyclohexanol HCl (S33005), upon sleep-wake architecture in rats. Animals were injected with vehicle or incremental doses of S33005 at the onset of either the dark or light periods. Digitised polygraphic recordings were performed, and changes evoked by S33005 were determined over 24-h recording periods, i.e., number and duration of sleep-wake episodes, latencies to PS and SWS, power band spectra of the electroencephalogram (EEG) and circadian changes. At 0.04 mg/kg, S33005 was inactive, whereas at 0.63 mg/kg, it modestly increased PS latencies and diminished PS duration during the light period. At 10 mg/kg, S33005 reduced markedly PS duration for about 4-h when injected prior to both light and dark periods. Latency to PS was prolonged, and the circadian acrophase was delayed. These effects are in keeping with previous studies of monoamine reuptake inhibitors, but, notably, SWS duration was increased when S33005 was injected at the onset of the light phase (+4%). These changes occurred without marked modifications in circadian rhythmicity or EEG spectral band power. Finally, even at the highest dose of S33005, only a limited rebound of SWS (+5%) and PS (+10%) was apparent. Amongst antidepressant to date examined, this is an original profile of influence upon sleep patterns. These results demonstrate a pattern of influence of S33005 upon sleep-wake architecture in rats which is globally consistent with antidepressant properties, but with a distinctive enhancement of restorative slow-wave sleep.

PPARα is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders

Biochemical and Biophysical Research Communications, 2007

Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPARa) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPARa ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3 h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erba was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPARa is involved in circadian clock control independently of the SCN and that PPARa could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.

Clock Genes and Altered Sleep–Wake Rhythms: Their Role in the Development of Psychiatric Disorders

International Journal of Molecular Sciences

In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause-effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep-wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep-wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

Modulatory effects of two novel agonists for serotonin receptor 7 on emotion, motivation and circadian rhythm profiles in mice

Neuropharmacology, 2012

a b s t r a c t Serotonin receptor 7, i.e. 5-HT(7) protein coded by Htr7 gene, was discovered in supra-chiasmatic nucleus (SCN) of the hypothalamus but is widespread in the forebrain. Studies have shown that this receptor is involved in learning/memory, regulation of mood and circadian rhythms. The modulatory effects of two novel agonists, LP-211 and LP-378, were assessed in male adult CD-1 mice with a battery of behavioral tests. Exp. 1 (Black/White Boxes, BWB: Adriani et al., 2009) and Exp. 2 (Dark/Light, D/L; Novelty-seeking, N-S) show: a) that LP-211 administration (acutely, at a 0.25 mg/kg dose i.p.) increases locomotion and BWB exploration; b) that the time spent away from an aversive, lit chamber (i.e., stress-induced anxiety) and in a new environment (i.e., novelty-induced curiosity) are both reduced. Sub-chronic LP-211 (at a 2.5 mg/kg dose i.p.) reveals a sensitization of locomotor-stimulant properties over 4e5 days. In Exp. 3 (BWB), a three-to four-fold dosage (acutely, at 0.83 mg/kg i.p.) is needed with LP-378 to increase locomotion and BWB exploration. In Exp. 4, mice under constant-light conditions reveal the expected spontaneous lengthening (1.5 h per day) of circadian rhythms. A significant phase advance is induced by LP-211 (at a 0.25 mg/kg dose i.p., administered around activity offset), with onset of activity taking place 6 h earlier than in controls. In summary, LP-211 is able to act consistently onto exploratory motivation, anxiety-related profiles, and spontaneous circadian rhythm. In the next future, agonist modulation of 5-HT(7) receptors might turn out to be beneficial for sleep and/or anxiety disorders.

Development and Therapeutic Potential of Small-Molecule Modulators of Circadian Systems

Annual review of pharmacology and toxicology, 2018

Circadian timekeeping systems drive oscillatory gene expression to regulate essential cellular and physiological processes. When the systems are perturbed, pathological consequences ensue and disease risks rise. A growing number of small-molecule modulators have been reported to target circadian systems. Such small molecules, identified via high-throughput screening or derivatized from known scaffolds, have shown promise as drug candidates to improve biological timing and physiological outputs in disease models. In this review, we first briefly describe the circadian system, including the core oscillator and the cellular networks. Research progress on clock-modulating small molecules is presented, focusing on development strategies and biological efficacies. We highlight the therapeutic potential of small molecules in clock-related pathologies, including jet lag and shiftwork; various chronic diseases, particularly metabolic disease; and aging. Emerging opportunities to identify and...

The retinoid X receptor: a nuclear receptor that modulates the sleep-wake cycle in rats

Psychopharmacology, 2020

Rationale The nuclear receptor retinoid X receptor (RXR) belongs to a nuclear receptor superfamily that modulates diverse functions via homodimerization with itself or several other nuclear receptors, including PPARα. While the activation of PPARα by natural or synthetic agonists regulates the sleep-wake cycle, the role of RXR in the sleep modulation is unknown. Objectives We investigated the effects of bexarotene (Bexa, a RXR agonist) or UVI 3003 (UVI, a RXR antagonist) on sleep, sleep homeostasis, levels of neurochemical related to sleep modulation, and c-Fos and NeuN expression. Methods The sleep-wake cycle and sleep homeostasis were analyzed after application of Bexa or UVI. Moreover, we also evaluated whether Bexa or UVI could induce effects on dopamine, serotonin, norepinephrine epinephrine, adenosine, and acetylcholine contents, collected from either the nucleus accumbens or basal forebrain. In addition, c-Fos and NeuN expression in the hypothalamus was determined after Bexa or UVI treatments. Results Systemic application of Bexa (1 mM, i.p.) attenuated slow-wave sleep and rapid eye movement sleep. In addition, Bexa increased the levels of dopamine, serotonin, norepinephrine epinephrine, adenosine, and acetylcholine sampled from either the nucleus accumbens or basal forebrain. Moreover, Bexa blocked the sleep rebound period after total sleep deprivation, increased in the hypothalamus the expression of c-Fos, and decreased NeuN activity. Remarkably, UVI 3003 (1 mM, i.p.) induced opposite effects in sleep, sleep homeostasis, neurochemicals levels, and c-Fos and NeuN activity. Conclusions The administration of RXR agonist or antagonist significantly impaired the sleep-wake cycle and exerted effects on the levels of neurochemicals related to sleep modulation. Moreover, Bexa or UVI administration significantly affected c-Fos and NeuN expression in the hypothalamus. Our findings highlight the neurobiological role of RXR on sleep modulation.