A role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of Wnt/β-catenin signaling (original) (raw)

Inhibitory Effect of Alcohol on Osteogenic Differentiation in Human Bone Marrow???Derived Mesenchymal Stem Cells

Alcoholism: Clinical & Experimental Research, 2004

Background: Alcohol-induced osteoporosis is characterized by a considerable suppression of osteogenesis. The objective of this investigation was to determine the effect of alcohol on gene expression, protein synthesis, and mineralization in human bone marrow-derived mesenchymal stem cells induced toward osteogenic differentiation in vitro. Methods: Human bone marrow-derived mesenchymal stem cells induced toward osteogenesis were cultured in the presence or absence of 50 mM alcohol. Stem cells were characterized by using SH2 antibody to the cell-surface antigen CD105/endoglin, and their proliferation in the presence of alcohol was quantified. The expression of genes for early, middle, and late markers of the osteogenic lineage was quantified by Northern analysis, and bone matrix protein synthesis was assayed. The effect of alcohol on cell-mediated matrix mineralization in terminally differentiated cultures was determined by von Kossa staining. Results: Fluorescence-activated cell sorting analysis of human mesenchymal stem cells separated with a Percoll gradient proved 99% homogeneity by using SH2 antibody to the surface antigen CD105. Dosedependent inhibition of proliferation of these stem cells occurred at concentrations greater than 50 mM alcohol. Gene expression of osteoblast-specific factor 2/core binding factor a1 (Osf2/Cbfa1), type I collagen, alkaline phosphatase, and osteocalcin (early, middle, and late markers for osteogenesis, respectively) was analyzed with and without osteogenic induction and treatment with 50 mM alcohol. After induction, Osf2/Cbfa1 levels were unresponsive to alcohol. To determine the effect of alcohol on human mesenchymal stem cell progression along the osteogenic pathway, messenger RNA (mRNA) levels for type I collagen, alkaline phosphatase, and osteocalcin were examined after osteogenic induction. After osteogenic induction, alcohol down-regulated the gene expression of type I collagen and significantly reduced its synthesis. Alcohol did not alter mRNA expression of alkaline phosphatase, a midstage marker for osteogenesis, but significantly decreased its activity compared with osteogenic induction alone. After induction, osteocalcin remained unchanged by alcohol at both the mRNA and protein levels. Histochemistry revealed decreased alkaline phosphatase staining and fewer alkaline phosphatase-positive cells in alcohol-treated human mesenchymal stem cell cultures. von Kossa staining revealed a reduction in the number of mineralizing nodules in stem cell cultures after alcohol treatment. Conclusions: Collectively, the data suggest that alcohol alters osteogenic differentiation in human bone marrow-derived mesenchymal stem cell cultures during lineage progression and provide further insight into alcohol-induced reduced bone formation.

Impact of Alcohol on Bone Health, Homeostasis, and Fracture Repair

Current Pathobiology Reports, 2020

Purpose of review: Alcohol use continues to rise globally. We review the current literature on the effect of alcohol on bone health, homeostasis and fracture repair to highlight what has been learned in people and animal models of alcohol consumption. Recent findings: Recently, forkhead box O (FoxO) has been found to be upregulated and activated in mesenchymal stem cells (MSC) exposed to alcohol. FoxO has also been found to modulate Wnt/β-catenin signaling, which is necessary for MSC differentiation. Recent evidence suggests alcohol activates FoxO signaling, which may be dysregulating Wnt/β-catenin signaling in MSCs cultured in alcohol. Summary: This review highlights the negative health effects learned from people and chronic and episodic binge alcohol consumption animal models. Studies using chronic alcohol exposure or alcohol exposure then bone fracture repair model have explored several different cellular and molecular signaling pathways important for bone homeostasis and fracture repair, and offer potential for future experiments to explore additional signaling pathways that may be dysregulated by alcohol exposure.

Alcohol Induces Cellular Senescence and Impairs Osteogenic Potential in Bone Marrow-Derived Mesenchymal Stem Cells

Alcohol and alcoholism (Oxford, Oxfordshire), 2017

Chronic and excessive alcohol consumption is a high-risk factor for osteoporosis. Bone marrow-derived mesenchymal stem cells (BM-MSCs) play an important role in bone formation; however, they are vulnerable to ethanol (EtOH). The purpose of this research was to investigate whether EtOH could induce premature senescence in BM-MSCs and subsequently impair their osteogenic potential. Human BM-MSCs were exposed to EtOH ranging from 10 to 250 mM. Senescence-associated β-galactosidase (SA-β-gal) activity, cell cycle distribution, cell proliferation and reactive oxygen species (ROS) were evaluated. Mineralization and osteoblast-specific gene expression were evaluated during osteogenesis in EtOH-treated BM-MSCs. To investigate the role of silent information regulator Type 1 (SIRT1) in EtOH-induced senescence, resveratrol (ResV) was used to activate SIRT1 in EtOH-treated BM-MSCs. EtOH treatments resulted in senescence-associated phenotypes in BM-MSCs, such as decreased cell proliferation, inc...

Ethanol inhibits human bone cell proliferation and function in vitro

Metabolism, 1991

The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 'H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%. protein synthesis as measured by 'H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantly reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.

Inhibition of NADPH Oxidases Prevents Chronic Ethanol-Induced Bone Loss in Female Rats

Journal of Pharmacology and Experimental Therapeutics, 2011

Previous in vitro data suggest that ethanol (EtOH) activates NADPH oxidase (Nox) in osteoblasts leading to accumulation of reactive oxygen species (ROS). This might be a mechanism underlying inhibition of bone formation and increased bone resorption observed in vivo after EtOH exposure. In a rat model in which cycling females were infused intragastrically with EtOH-containing liquid diets, EtOH significantly decreased bone formation and stimulated osteoblast-dependent osteoclast differentiation. These effects were reversed by exogenous 17-β-estradiol coadministration. Moreover, coadministration of N-acetyl cysteine (NAC), an antioxidant, or diphenylene iodonium (DPI), a specific Nox inhibitor, also abolished chronic EtOH-associated bone loss. EtOH treatment up-regulated mRNA levels of Nox1, 2, 4, and the receptor activator of nuclear factor-κB ligand (RANKL), an essential factor for differentiation of osteoclasts in bone. Protein levels of Nox4, a major Nox isoform expressed in nonphagocytic cells, was also up-regulated by EtOH in bone. 17-β-Estradiol, NAC, and DPI were able to normalize EtOH-induced up-regulation of Nox and RANKL. In vitro experiments demonstrated that EtOH directly up-regulated Nox expression in osteoblasts. Pretreatment of osteoblasts with DPI eliminated EtOH-induced RANKL promoter activity. Furthermore, EtOH induced RANKL gene expression, and RANKL promoter activation in osteoblasts was ROS-dependent. These data suggest that inhibition of Nox expression and activity may be critical for prevention of chronic EtOH-induced osteoblast-dependent bone loss.

Ethanol Inhibits Mesenchymal Stem Cell Osteochondral Lineage Differentiation Due in Part to an Activation of Forkhead Box Protein O‐Specific Signaling

Alcoholism: Clinical and Experimental Research, 2020

This article is protected by copyright. All rights reserved Background: During bone fracture repair, resident mesenchymal stem cells (MSCs) differentiate into chondrocytes, to form a cartilaginous fracture callus, and osteoblasts, to ossify the collagen matrix. Our laboratory previously reported that alcohol administration led to decreased cartilage formation within the fracture callus of rodents and this effect was mitigated by post-fracture antioxidant treatment. FoxO transcription factors are activated in response to intracellular reactive oxygen species (ROS), and alcohol has been shown to increase ROS. Activation of FoxOs has also been shown to inhibit canonical Wnt signaling, a necessary pathway for MSC differentiation. These findings have led to our hypothesis that alcohol exposure decreases osteochondrogenic differentiation of MSCs through the activation of FoxOs. Methods: Primary rat MSCs were treated with ethanol and assayed for FoxO expression, FoxO activation and downstream target expression. Next, MSCs were differentiated towards osteogenic or chondrogenic lineages in the presence of 50mM ethanol and alterations in osteochondral lineage marker expression was determined. Lastly, osteochondral differentiation experiments were repeated with FoxO1/3 knockdown or with FoxO1/3 inhibitor AS1842856 and osteochondral lineage marker expression was determined. Results: Ethanol increased the expression of FoxO3a at mRNA and protein levels in primary cultured MSCs. This was accompanied by an increase in FoxO1 nuclear localization, FoxO1 activation, and downstream catalase expression. Moreover, ethanol exposure decreased expression of osteogenic and chondrogenic lineage markers. FoxO1/3 knockdown restored pro-osteogenic and pro-chondrogenic lineage marker expression in the presence of 50mM ethanol. However, FoxO1/3 inhibitor only restored pro-osteogenic lineage marker expression. Conclusions: These data show that ethanol has the ability to inhibit MSC differentiation, and this ability may rely, at least partially, on the activation of FoxO transcription factors.

Prenatal Ethanol Exposure Affects the Proliferation and Differentiation of the Osteoblasts from Newborn Rats

OnLine Journal of Biological Sciences, 2015

Alcohol exerts teratogenic effects and its consumption during pregnancy may cause various alterations in the fetus, including deficit of bone development. The objective of this study was to evaluate the initial responses, on osteoblasts isolated from newborn rat calvaria, after prenatal ethanol exposure. Nine pregnant rats were divided into three groups according to the diet fed during pregnancy: Rats fed 20% ethanol, Pair-fed and control were the groups. At 3 days of life, newborn rats were euthanized for removal of the calvaria and isolation of osteogenic cells by sequential enzymatic digestion. The cells were cultured for a maximum period of 14 days. The effect of alcohol was investigated by the measurement of cell adhesion, proliferation and viability, total protein content, Alkaline Phosphatase (ALP) activity and bone matrix formation. The results showed the highest proliferation in ETH group on the 3 th day and the highest ALP activity and bone matrix formation, in this group, on the 14 th day, indicating that prenatal ethanol seems to affect the proliferation early and the ALP activity and bone matrix formation in more advanced periods.

Binge Alcohol-Induced Bone Damage is Accompanied by Differential Expression of Bone Remodeling-Related Genes in Rat Vertebral Bone

Calcified Tissue International, 2009

Binge alcohol-related bone damage is prevented by concurrent administration of bisphosphonates, suggesting an activation of bone resorption with patterned alcohol exposure. Although chronic alcohol abuse is known to cause osteopenia, little is known about the effects of binge drinking on bone metabolism. We examined the effects of binge alcohol exposure on the relationship between bone damage and modulation of bone remodeling-specific gene expression profiles. Our hypothesis was that bone damage observed in young adult rats after binge alcohol exposure is associated with differential expression of bone remodeling-related gene expression. We further hypothesized that this differential gene expression specific to bone remodeling (bone resorption or formation related) would be influenced by the duration of binge alcohol exposure. Binge alcohol (3 g/kg, i.p.) was administered on 3 consecutive days each week, for 1 or 4 weeks, to adult male rats. Matched control animals were injected with an equal volume of isotonic saline. Lumbar vertebrae, L4-5, were analyzed for the presence of bone damage by quantitative computed tomography and compressive strength analysis. Total RNA was isolated from an adjacent vertebrae (L3), and whole transcriptome gene expression data were obtained for each sample. The expression levels of a subset of bone formation and resorption-associated differentially expressed genes were validated by quantitative reverse transcriptase–polymerase chain reaction. Bone loss was not observed after 1 week of treatment but was observed after four binge alcohol cycles with a 23% decrease in cancellous bone mineral density and 17% decrease in vertebral compressive strength compared with control values (P < 0.05). We observed that the duration of binge alcohol treatment influenced the modulation of expression profiles for genes that regulate the bone formation process. The expression of key bone formation-related marker genes such as osteocalcin and alkaline phosphatase were significantly reduced (P < 0.05) after acute binge alcohol exposure, and expression of regulators of osteoblast activity such as bone morphogenetic proteins and parathyroid hormone receptor displayed significantly (P < 0.05) decreased differential expression. The expression of sclerostin, a key canonical Wnt inhibitory protein, was significantly increased after acute binge alcohol treatment. The expression of important regulators of osteoclast maturation and activity such as NF-κβ (nuclear factor κβ) ligand (RANKL) and interleukin-6 were significantly increased (P < 0.05) by binge alcohol, and osteoprotegerin levels were significantly decreased (P < 0.05) in vertebral bone. These results show that expression patterns of several key bone remodeling genes are significantly perturbed by binge alcohol treatment, suggesting that perturbation of gene expression associated with bone remodeling may be one mechanism contributing to the disruption of bone mass homeostasis and subsequent bone loss observed after binge alcohol exposure in rodents.