Identification of a 34-kD polypeptide as a light chain of microtubule-associated protein-1 (MAP-1) and its association with a MAP-1 peptide that binds to microtubules (original) (raw)

The Journal of Cell Biology

Abstract

We examined the association of a 34-kD light chain component to the heavy chains of MAP-1 using a monoclonal antibody that specifically binds the 34-kD component and labels neuronal microtubules in a specific and saturable manner. Immunoprecipitation of MAP-1 heavy chains together with the 34-kD component by the antibody indicates that the 34-kD polypeptide forms a complex with MAP-1 heavy chains. Both major isoforms of MAP-1 heavy chains (MAP-1A and MAP-1 B) were found in the immunoprecipitate. Digestion of MAP-1 with alpha-

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (26)

  1. Bloom, G. S., F. C. Luca, and R. B. Vallee. 1984. Widespread cellular distribution of MAP 1A in the mitotic spindle and on interphase microtubules. J. Cell BioL 98:331-340.
  2. Bloom, G. S., T. A. Schoenfeld, and R. B. Vallee. 1984. Widespread distribution of the major polypeptide component of MAP-I (microtubule associated protein 1) in the nervous system. Z Cell Biol. 98:320-330.
  3. Gaskin, F., C. R. Cantor, and M. L. Shelanski. 1974. Turbidometric studies of the in vitro assembly and disassembly of porcine microtubules. J. Mol. Biol. 89:737-758.
  4. Kotani, S., M. Murufushi, E. Nishida, and H. Sakai. 1984. 33 K protein--an inhibitory factor of tubulin polymerization in porcine brain. J. Biochem. 96:959-969.
  5. Kumagai, H., and H. Sakai. 1983. A porcine brain protein (35 K protein) which bundles microtubules and its identification as glyceraldehyde-3-phos- phate dehydrogenase..L Biochem. 93:1259-1269.
  6. Kuznetsov, S. A., V. I. Rodionov, A. D. Bershadsky, V. I. Gelfand, and V. A. Rosenblat. 1980. High molecular weight protein MAP-2 promoting microtubule assembly in vitro is associated with microtubules in cells. Cell BioL Int. Rep. 4:1017-1024.
  7. Kuznetsov, S. A., V. 1. Rodionov, V. I. Gelfand, and V. A. Rosenblat. 1981. Purification of high M~ microtubule proteins MAP-1 and MAP-2. FEBS (Fed. Eur. Biochem. Soc.) Left. 135:237-240.
  8. Kuznetsov, S. A., V. I. Rodionov, V. I. Gelfand, and V. A. Rosenblat. 1981. Microtubule-associated protein MAP-1 promotes microtubule assembly in vitro. FEBS (Fed. Eur. Biochem. Soc.) Lett. 135:241-244.
  9. Kuznetsov, S. A., V. 1. Rodionov, V. I. Gelfand, and V. A. Rosenblat. 1984. MAP-2 competes with MAP-I for binding to microtubules. Biochem. Biophys. Res. Commun. 119:173-178.
  10. Laemmli, U. K. 1970. Cleavage of structural proteins during the assem- bly of the head of bacterio!ahage T4. Nature (Lond.) 227:680-685.
  11. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265- 275.
  12. Matus, A., R. Bernhardt, and T. Hugh-Jones. 1981. High molecular weight microtubule-associated proteins are preferentially associated with den- dritic microtubules in brain. Proc. Natl. Acad. Sci. USA. 78:3010-3014.
  13. Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron- opaque stain in electron microscopy. J. Cell Biol. 17:208-212.
  14. Rodionov, V. I., V. I. Gelfand, and V. A. Rosenblat. 1978. Polymeriza- tion of purified tubulin in the presence of glycerol. Dok. Akad. Nauk. SSSR 239:231-233.
  15. Rodionov, V. I., E. S. Nadezhdina, E. V. Leonova, E. A, Vaisberg, S. A. Kuznetsov, and V. i. Gelfand. 1985. Identification of 100-kDa protein associ- ated with microtubules, intermediate filaments, and coated vesicles in cultured cells. Exp. Cell Res. 159:377-387.
  16. Shelanski, M. L., F. Gaskin, and C. R. Cantor. 1973. Microtubule assembly in the absence of added nucleotides. Proc. Natl. Acad. Sci. USA. 70:765-768.
  17. Sloboda, R. D., and K. Dickerson. 1980. Structure and composition of the cytoskeletons of nucleated erythrocytes. I. The presence of microtubule- associated protein 2 in the marginal band. J. Cell Biol. 87:170-179.
  18. Stearns, M. E. 1984. Cytomatrix in chromatophores. J. Cell Biol. 99(1, Pt. 2):144s--15 Is. (Suppl.)
  19. Towbin, H., T. Stachelin, and J. Gordon. 1979. Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 76:4350--4354.
  20. Vallee, R. B. 1980. Structure and phosphorylation of microtubule- associated protein 2 (MAP-2). Proc. Natl. Acad. Sci. USA. 77:3206-3210.
  21. VaUee, R. B., and S. E. Davis. 1983. Low molecular weight microtubule- associated proteins are light chains of microtubule-associated protein 1 (MAP-
  22. Proc. Natl. Acad. Sci. USA. 80:1342-1346.
  23. Vallee, R. B., G. S. Bloom, and W. E. Theurkauf. 1984. Microtubule- associated proteins: subunits of the cytomatrix. J. Cell Biol. 99(1, Pt. 2):38s- 44s. (Suppl.)
  24. Weatherbee, J. A., P. Shedine, R. N. Mascardo, J. G. Izant, R. B. Luftig, and R. R. Weihing. 1982. Microtubule-associated proteins of HeLa cells: heat stability of the 200,000 molecular weight HeLa MAPs and detection of MAP- 2 in HeLa cell extracts and cycled microtubules. J. Cell Biol. 92:155-163.
  25. Weber, K., and M. Osborn. 1969. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244:4406-4412.
  26. Weingarten, M. D., A. H. Lockwood, S.-Y. Hwo, and M. W. Kirschner. 1975. A protein factor essential for microtubule assembly. Proc. Natl. Acad Sci. USA. 72:1858-1862.