Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development (original) (raw)
Related papers
MicroRNAs (miRNAs) are non-coding small RNAs of 22 nt that regulate the gene expression by base pairing with target mRNAs, leading to mRNA cleavage or translational repression. It is currently estimated that miRNAs account for 1% of predicted genes in higher eukaryotic genomes and that up to 30% of genes might be regulated by miRNAs. However, only very few miRNAs have been functionally characterized and the general functions of miRNAs are not globally studied. In this study, we systematically analyzed the expression patterns of miRNA targets using several public microarray profiles. We found that the expression levels of miRNA targets are lower in all mouse and Drosophila tissues than in the embryos. We also found miRNAs more preferentially target ubiquitously expressed genes than tissue-specifically expressed genes. These results support the current suggestion that miRNAs are likely to be largely involved in embryo development and maintaining of tissue identity.
miRdentify: high stringency miRNA predictor identifies several novel animal miRNAs
Nucleic acids research, 2014
During recent years, miRNAs have been shown to play important roles in the regulation of gene expression. Accordingly, much effort has been put into the discovery of novel uncharacterized miRNAs in various organisms. miRNAs are structurally defined by a hairpin-loop structure recognized by the two-step processing apparatus, Drosha and Dicer, necessary for the production of mature ∼ 22-nucleotide miRNA guide strands. With the emergence of high-throughput sequencing applications, tools have been developed to identify miRNAs and profile their expression based on sequencing reads. However, as the read depth increases, false-positive predictions increase using established algorithms, underscoring the need for more stringent approaches. Here we describe a transparent pipeline for confident miRNA identification in animals, termed miRdentify. We show that miRdentify confidently discloses more than 400 novel miRNAs in humans, including the first male-specific miRNA, which we successfully val...
Molecular Cell, 2007
Mirtrons are alternative precursors for micro-RNA biogenesis that were recently described in invertebrates. These short hairpin introns use splicing to bypass Drosha cleavage, which is otherwise essential for the generation of canonical animal microRNAs. Using computational and experimental strategies, we now establish that mammals have mirtrons as well. We identified 3 mirtrons that are well conserved and expressed in diverse mammals, 16 primate-specific mirtrons, and 46 candidates supported by limited cloning evidence in primates. As with some fly and worm mirtrons, the existence of well-conserved mammalian mirtrons indicates their relatively ancient incorporation into endogenous regulatory pathways. However, as worms, flies, and mammals each have different sets of mirtrons, we hypothesize that different animals may have independently evolved the capacity for this hybrid small RNA pathway. This notion is supported by our observation of several clade-specific features of mammalian and invertebrate mirtrons.
The evolution and functional diversification of animal microRNA genes
Cell Research, 2008
microRNAs (miRNAs) are an abundant class of ~22 nucleotide (nt) regulatory RNAs that are pervasive in higher eukaryotic genomes. In order to fully understand their prominence in genomes, it is necessary to elucidate the molecular mechanisms that can diversify miRNA activities. In this review, we describe some of the many strategies that allow novel miRNA functions to emerge, with particular emphasis on how miRNA genes evolve in animals. These mechanisms include changes in their sequence, processing, or expression pattern; acquisition of miRNA* functionality or antisense processing; and de novo gene birth. The facility and versatility of miRNAs to evolve and change likely underlies how they have become dominant constituents of higher genomes.
eLife, 2018
Mature microRNAs (miRNAs) are processed from primary transcripts (pri-miRNAs), and their expression is controlled at transcriptional and post-transcriptional levels. However, how regulation at multiple levels achieves precise control remains elusive. Using published and new datasets, we profile a time course of mature and pri-miRNAs in embryos and reveal the dynamics of miRNA production and degradation as well as dynamic changes in pri-miRNA isoform selection. We found that 5' nucleotides influence stability of mature miRNAs. Furthermore, distinct half-lives of miRNAs from the cluster shape their temporal expression patterns, and the importance of rapid degradation of the miRNAs in gene regulation is detected as distinct evolutionary signatures at the target sites in the transcriptome. Finally, we show that rapid degradation of miR-3/-309 may be important for regulation of the planar cell polarity pathway component Vang. Altogether, the results suggest that complex mechanisms re...
Bioinformatics, 2008
Background: MicroRNAs (miRNAs) are small, noncoding RNA molecules that act as posttranscriptional regulators of gene expression. Studies concerning transcriptional regulation of miRNAs have so far concentrated on those located within the intergenic region of the genome and the search for putative promoters, thus leaving open the question of the existence of possible regulatory elements common to all miRNAs including those located in introns of protein coding genes. Results: In this study, we initially searched for motifs occurring in the area 1000 bp upstream from all miRNAs independent of their genomic location. We discovered a previously unknown sequence motif GANNNNGA that displayed a conserved distribution in the nematode worms Caenorhabditis elegans and Caenorhabditis briggsae. This motif had a peak occurrence at 500 bp upstream, with a sharp drop-off toward the miRNA start site. Further analysis indicated that this motif was locally restricted and not enriched 1000-5000 bp upstream or 0-2000 bp downstream of the miRNA start site. In addition, this motif was observed to be most abundant in the upstream sequences of two important miRNAs, mir-1 and mir-124. This abundance was also conserved in phylogenetically distant species including human and mouse. Conclusion: The results show that the motif GANNNNGA is conserved close to miRNA precursor start sites, suggesting that it may be involved in miRNA sequence recognition or regulation. This data provides important knowledge for the identification and computational prediction of miRNA sequences.