LIVE FAST, DIE YOUNG: TRADE-OFFS BETWEEN FITNESS COMPONENTS AND SEXUALLY ANTAGONISTIC SELECTION ON WEAPONRY IN SOAY SHEEP (original) (raw)

Environmental Heterogeneity Generates Fluctuating Selection on a Secondary Sexual Trait

Current Biology, 2008

In any population in which resources are limiting, the allocation of resources toward increased reproductive success may generate costs to survival . The relationship between a sexually selected trait and fitness will therefore represent a balance between its relative associations with fecundity versus viability . Because the risk of mortality in a population is likely to be heavily determined by ecological conditions, survival costs may vary as a function of the prevailing environment . As a result, for populations experiencing heterogeneous ecological conditions, there may not be a single optimal level of allocation toward reproduction versus survival . Here, we show that early viability and fecundity selection act in opposing directions on a secondary sexual trait and that their relative magnitude depends upon ecological conditions, generating fluctuating selection. In a wild population of Soay sheep (Ovis aries), phenotypic and genetic associations between male horn growth and lifetime reproductive success were positive under good environmental conditions (because of increased breeding success) and negative under poor environmental conditions (because of reduced survival). In an unpredictable environment, high allocation to early horn growth is a gamble that will only pay off if ensuing conditions are favorable. Such fluctuating selection may play an important role in preventing the erosion of genetic variance in secondary sexual traits.

Age-dependent relationship between horn growth and survival in wild sheep

Journal of Animal Ecology, 2009

Trade-offs in resource allocation underline the evolution of life-history traits but their expression is frequently challenged by empirical findings. In large herbivores, males with large antlers or horns typically have high mating success. The fitness costs of large horns or antlers have rarely been quantified although they are controversial.

Horn growth rate and longevity: implications for natural and artificial selection in thinhorn sheep (Ovis dalli)

Journal of Evolutionary Biology, 2007

We used horn measurements from natural and hunted mortalities of male thinhorn sheep Ovis dalli from Yukon Territory, Canada, to examine the relationship between rapid growth early in life and longevity. We found that rapid growth was associated with reduced longevity for sheep aged 5 years and older for both the hunted and natural mortality data sets. The negative relationship between growth rate and longevity in hunted sheep can at least partially be explained by morphologically biased hunting regulations. The same trend was evident from natural mortalities from populations that were not hunted or underwent very limited hunting, suggesting a naturally imposed mortality cost directly or indirectly associated with rapid growth. Age and growth rate were both positively associated with horn size at death for both data sets, however of the two growth rate appeared to be a better predictor. Large horn size can be achieved both by individuals that grow horns rapidly and by those that have greater longevity, and the trade-off between growth rate and longevity could limit horn size evolution in this species. The similarity in the relationship between growth rate and longevity for hunted and natural mortalities suggests that horn growth rate should not respond to artificial selection. Our study highlights the need for the existence and study of protected populations to properly assess the impacts of selective harvesting.

Function of weaponry in females: the use of horns in intrasexual competition for resources in female Soay sheep

Biology Letters, 2007

In many species, females show reduced expression of a trait that is under sexual selection in males, and this expression is thought to be maintained through genetic associations with the male phenotype. However, there is also the potential for the female trait to convey an advantage in intrasexual conflicts over resources. We tested this hypothesis in a feral population of Soay sheep, in which males and females have a polymorphism for horn development, producing either full (normal horned), reduced (scurred) or no (polled, females only) horns. During the lambing period, females who possessed horns were more likely to initiate and win aggressive interactions, independent of age, weight and birthing status. The occurrence of aggression was also context dependent, decreasing over the lambing period and associated with local density. Our results demonstrate that a trait that confers benefits to males during intrasexual competition for mates may also be used by females in intrasexual competition over resources: males use weaponry to gain mates, whereas females use weaponry to gain food.

Age-dependent genetic effects on a secondary sexual trait in male Alpine ibex, Capra ibex: HETEROZYGOSITY AND HORN GROWTH IN CAPRA IBEX

Molecular Ecology, 2007

Secondary sexual traits, such as horns in ungulates, may be good indicators of genetic quality because they are costly to develop. Genetic effects on such traits may be revealed by examining correlations between multilocus heterozygosity (MLH) and trait value. Correlations between MLH and fitness traits, termed heterozygosity–fitness correlations (HFC), may reflect inbreeding depression or associative overdominance of neutral microsatellite loci with loci directly affecting fitness traits. We investigated HFCs for horn growth, body mass and faecal counts of nematode eggs in wild Alpine ibex (Capra ibex). We also tested if individual inbreeding coefficients (f′) estimated from microsatellite data were more strongly correlated with fitness traits than MLH. MLH was more strongly associated with trait variation than f′. We found HFC for horn growth but not for body mass or faecal counts of nematode eggs. The effect of MLH on horn growth was age-specific. The slope of the correlation between MLH and yearly horn growth changed from negative to positive as males aged, in accordance with the mutation accumulation theory of the evolution of senescence. Our results suggest that the horns of ibex males are an honest signal of genetic quality.

Male mating behaviour affects growth of secondary sexual traits: a mechanism for rapid phenotypic change

Animal Behaviour, 2020

Intra-and intersexual selection drives the evolution of secondary sexual traits, leading to increased body size, trait size and generally increased reproductive success in bearers with the largest, most attractive traits. Evolutionary change through natural selection is often thought of primarily in terms of genetic changes through mutations and adaptive selection. However, this view ignores the role of the plasticity in phenotypes and behaviour and its impact on accelerating or decelerating the expression of sexually selected traits. Here, we argue that sudden changes in selection pressures (e.g. predation pressure) may cause a cascade of behavioural responses, leading to a rapid change in the size of such traits. We propose that selective removal of individuals with the most prominent traits (such as large antlers or horns in male ungulates) induces behavioural changes in the surviving males, leading to a reduction in the growth of these traits (phenotypic expression). To test this idea, we used an individual-based simulation, parametrized with empirical data of male bighorn sheep, Ovis candensis. Our model shows that the expression (phenotype, not genotype) of the trait under selection (here horn size) can be negatively impacted, if the biggest, most dominant males in the population are removed. While the selective removal of prime males opens breeding opportunities for younger, smaller males, we predicted that it would come at the expense of growth and maintenance. As predicted, we observed a rapid decline in average male horn length in our model. We argue that this decline happens because smaller males, instead of allocating energy into growth, divert this energy towards participation in mating activities that are typically exclusively available to prime males. While our model deals with ecological life-history trade-offs, it cannot predict evolutionary outcomes. However, this nongenetic mechanism is important for the understanding of evolutionary processes because it describes how heritable traits can rapidly change because of behavioural plasticity, long before any genetic changes might be detectable.