Heritability and longitudinal stability of impulsivity during adolescence. (original) (raw)

Heritability and Longitudinal Stability of Impulsivity in Adolescence

Impulsivity is a multifaceted personality construct that plays an important role throughout the lifespan in psychopathological disorders involving self-regulated behaviors. Its genetic and environmental etiology, however, is not clearly understood during the important developmental period of adolescence. This study investigated the relative influence of genes and environment on self-reported impulsive traits in adolescent twins measured on two separate occasions (waves) between the ages of 11 and 16. An adolescent version of the Barratt Impulsiveness Scale (BIS) developed for this study was factored into subscales reflecting inattention, motor impulsivity, and non-planning. Genetic analyses of these BIS subscales showed moderate heritability, ranging from 33-56% at the early wave (age 11-13 years) and 19-44% at the later wave (age 14-16 years). Moreover, genetic influences explained half or more of the variance of a single latent factor common to these subscales within each wave. Genetic effects specific to each subscale also emerged as significant, with the exception of motor impulsivity. Shared twin environment was not significant for either the latent or specific impulsivity factors at either wave. Phenotypic correlations between waves ranged from r = 0.25 to 0.42 for subscales. The stability correlation between the two latent impulsivity factors was r = 0.43, of which 76% was attributable to shared genetic effects, suggesting strong genetic continuity from mid to late adolescence. These results contribute to our understanding of the nature of impulsivity by demonstrating both multidimensionality and genetic specificity to different facets of this complex construct, as well as highlighting the importance of stable genetic influences across adolescence.

Genetic association of impulsivity in young adults: a multivariate study

Translational Psychiatry, 2014

Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N = 426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype-phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the nonplanning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors.

Niv 2011 Impulsivity

2012

Impulsivity is a multifaceted personality construct that plays an important role throughout the lifespan in psychopathological disorders involving self-regulated behaviors. Its genetic and environmental etiology, however, is not clearly understood during the important developmental period of adolescence. This study investigated the relative influence of genes and environment on self-reported impulsive traits in adolescent twins measured on two separate occasions (waves) between the ages of 11 and 16. An adolescent version of the Barratt Impulsiveness Scale (BIS) developed for this study was factored into subscales reflecting inattention, motor impulsivity, and non-planning. Genetic analyses of these BIS subscales showed moderate heritability, ranging from 33-56% at the early wave (age 11-13 years) and 19-44% at the later wave (age 14-16 years). Moreover, genetic influences explained half or more of the variance of a single latent factor common to these subscales within each wave. Genetic effects specific to each subscale also emerged as significant, with the exception of motor impulsivity. Shared twin environment was not significant for either the latent or specific impulsivity factors at either wave. Phenotypic correlations between waves ranged from r = 0.25 to 0.42 for subscales. The stability correlation between the two latent impulsivity factors was r = 0.43, of which 76% was attributable to shared genetic effects, suggesting strong genetic continuity from mid to late adolescence. These results contribute to our understanding of the nature of impulsivity by demonstrating both multidimensionality and genetic specificity to different facets of this complex construct, as well as highlighting the importance of stable genetic influences across adolescence.

Gene Effects and G x E Interactions in the Differential Prediction of Three Aspects of Impulsiveness

Social Psychological and Personality Science, 2014

Several polymorphisms relevant to dopamine and serotonin have been identified as potential contributors to individual differences in impulsivity versus self-control. Because impulsivity is a multifaceted construct, a need remains to examine more closely how various genes relate to different aspects of impulsivity. We examined four dopamine-related polymorphisms and the serotonin transporter as predictors of three aspects of impulsivity, two bearing on impulsive reactions to emotions and one on difficulty in completing intended actions. Early adversity was also examined as a potentiator of genetic effects. Undergraduates completed measures of impulsivity and early adversity and were genotyped. COMT, BDNF, DRD4, and 5HTTLPR (the latter two in interaction with early adversity) made independent contributions to prediction of Pervasive Influence of Feelings. BDNF made a contribution to Lack of Follow-Through. ANKK1 and 5HTTLPR (both in interaction with early adversity) made independent contributions to Feelings Trigger Action. Thus, five polymorphisms contributed to predicting impulsivity, but different polymorphisms related to different aspects.

Adolescent impulsivity phenotypes characterized by distinct brain networks

Nature Neuroscience, 2012

The impulsive behavior that is often characteristic of adolescence may reflect underlying neurodevelopmental processes. Moreover, impulsivity is a multi-dimensional construct, and it is plausible that distinct brain networks contribute to its different cognitive, clinical and behavioral aspects. As these networks have not yet been described, we identified distinct cortical and subcortical networks underlying successful inhibitions and inhibition failures in a large sample (n = 1,896) of 14-year-old adolescents. Different networks were associated with drug use (n = 1,593) and attention-deficit hyperactivity disorder symptoms (n = 342). Hypofunctioning of a specific orbitofrontal cortical network was associated with likelihood of initiating drug use in early adolescence. Right inferior frontal activity was related to the speed of the inhibition process (n = 826) and use of illegal substances and associated with genetic variation in a norepinephrine transporter gene (n = 819). Our results indicate that both neural endophenotypes and genetic variation give rise to the various manifestations of impulsive behavior.

Motor impulsivity during childhood and adolescence: a longitudinal biometric analysis of the go/no-go task in 9- to 18-year-old twins

Developmental psychology, 2014

In the present study, we investigated genetic and environmental effects on motor impulsivity from childhood to late adolescence using a longitudinal sample of twins from ages 9 to 18 years. Motor impulsivity was assessed using errors of commission (no-go errors) in a visual go/no-go task at 4 time points: ages 9-10, 11-13, 14-15, and 16-18 years. Significant genetic and nonshared environmental effects on motor impulsivity were found at each of the 4 waves of assessment with genetic factors explaining 22%-41% of the variance within each of the 4 waves. Phenotypically, children's average performance improved across age (i.e., fewer no-go errors during later assessments). Multivariate biometric analyses revealed that common genetic factors influenced 12%-40% of the variance in motor impulsivity across development, whereas nonshared environmental factors common to all time points contributed to 2%-52% of the variance. Nonshared environmental influences specific to each time point al...

The effect of 5-HTT gene promoter polymorphism on impulsivity depends on family relations in girls

Progress in neuro- …, 2008

The short (S) allele of the 5-HTT gene promoter region polymorphism (5-HTTLPR), in combination with adverse environmental influence, leads to higher likelihood of depression. Impulsivity has been related to low serotonin turnover, poor regulation of affect, and problems in the family, including child maltreatment. The current study explored the effect of the 5-HTTLPR polymorphism in the serotonin transporter gene and adverse family environment on impulsivity in adolescents. Healthy adolescents participating in the Estonian Children Personality Behaviour and Health Study (n = 483) filled the Adaptive and Maladaptive Impulsivity Scale (AMIS), Barratt Impulsiveness Scale (BIS-11), a scale measuring family relations, and were genotyped. While genotype alone was not associated with thoughtlessness, BIS-11 impulsiveness, fast decision-making or excitement seeking, 5-HTTLPR S allele carriers, however, had higher scores of disinhibition. In girls carrying the S allele, scores of thoughtlessness and disinhibition depended on family relations, being higher with less warmth in the family. Adverse family relations had no effect on impulsivity in girls with LL genotype. In boys, the effects of family relations on maladaptive impulsivity did not depend on genotype. However, the S allele and high maltreatment in the family both independently increased disinhibition and the BIS-11 score in boys. Family environment and the 5-HTTLPR genotype had no interactive effect on excitement seeking or fast decision-making. In summary, carrying the S allele may lead to high maladaptive impulsivity due to higher sensitivity to environmental adversity, which is more significantly expressed in girls.

Impulsivity as an Endophenotype in ADHD: Negative Findings

Journal of Attention Disorders, 2018

Impulsivity has a strong genetic component and is considered an endophenotype in many psychiatric disorders. Impulsivity in adult ADHD has become a focus of interest more recently because of its suggested prominence in this age. Objective: This study aimed to access self-reported impulsivity levels in biological parents of ADHD offspring, according to their status: non-ADHD (controls), remitted, nonremitted. Method: Impulsivity levels of 155 parents of ADHD children were compared according to their status using the Barratt Impulsiveness Scale (BIS-11). Results: The ADHD group presented the highest levels of impulsivity compared with all other groups. The remitted ADHD and control groups showed no significant differences in impulsivity levels. Conclusion: Impulsivity tended to remit alongside ADHD symptoms in remitters and to persist in those presenting with the residual form of adult ADHD suggesting it should not be considered as an endophenotype. Only the attentional dimension was ...