Giant Electroresistance in Ferroelectric Tunnel Junctions (original) (raw)
Related papers
Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions
Nature Communications, 2014
Among recently discovered ferroelectricity-related phenomena, the tunnelling electroresistance (TER) effect in ferroelectric tunnel junctions (FTJs) has been attracting rapidly increasing attention owing to the emerging possibilities of non-volatile memory, logic and neuromorphic computing applications of these quantum nanostructures. Despite recent advances in experimental and theoretical studies of FTJs, many questions concerning their electrical behaviour still remain open. In particular, the role of ferroelectric/electrode interfaces and the separation of the ferroelectric-driven TER effect from electrochemical ('redox'-based) resistance-switching effects have to be clarified. Here we report the results of a comprehensive study of epitaxial junctions comprising BaTiO 3 barrier, La 0.7 Sr 0.3 MnO 3 bottom electrode and Au or Cu top electrodes. Our results demonstrate a giant electrode effect on the TER of these asymmetric FTJs. The revealed phenomena are attributed to the microscopic interfacial effect of ferroelectric origin, which is supported by the observation of redox-based resistance switching at much higher voltages.
Tunneling electroresistance in ferroelectric tunnel junctions with a composite barrier
Applied Physics Letters, 2009
Tunneling electroresistance (TER) effect is the change in the electrical resistance of a ferroelectric tunnel junction (FTJ) associated with polarization reversal in the ferroelectric barrier layer. Here we predict that a FTJ with a composite barrier that combines a functional ferroelectric film and a thin layer of a non-polar dielectric can exhibit a significantly enhanced TER. Due to the change in the electrostatic potential with polarization reversal the non-polar dielectric barrier acts as a switch that changes its barrier height from a low to high value. The predicted values of TER are giant and indicate that the resistance of the FTJ can be changed by many orders in magnitude at the coercive electric field of ferroelectric.
Theoretical Approach to Electroresistance in Ferroelectric Tunnel Junctions
Physical Review Applied
In this paper, a theoretical approach, comprising the non-equilibrium Green's function method for electronic transport and Landau-Khalatnikov equation for electric polarization dynamics, is presented to describe polarization-dependent tunneling electroresistance (TER) in ferroelectric tunnel junctions. Using appropriate contact, interface, and ferroelectric parameters, measured current-voltage characteristic curves in both inorganic (Co/BaTiO3/La0.67Sr0.33MnO3) and organic (Au/PVDF/W) ferroelectric tunnel junctions can be well described by the proposed approach. Furthermore, under this theoretical framework, the controversy of opposite TER signs observed experimentally by different groups in Co/BaTiO3/La0.67Sr0.33MnO3 systems is addressed by considering the interface termination effects using the effective contact ratio, defined through the effective screening length and dielectric response at the metal/ferroelectric interfaces. Finally, our approach is extended to investigate the role of a CoOx buffer layer at the Co/BaTiO3 interface in a ferroelectric tunnel memristor. It is shown that, in order to have a significant memristor behavior, not only the interface oxygen vacancies but also the CoOx layer thickness may vary with the applied bias.
Tunneling Electroresistance Effect in Ferroelectric Tunnel Junctions at the Nanoscale
Nano Letters, 2009
Stable and switchable polarization of ferroelectric materials opens a possibility to electrically control their functional behavior. A particularly promising approach is to employ ferroelectric tunnel junctions where the polarization reversal in a ferroelectric barrier changes the tunneling current across the junction. Here, we demonstrate the reproducible tunneling electroresistance effect using a combination of Piezoresponse Force Microscopy (PFM) and Conducting Atomic Force Microscopy (C-AFM) techniques on nanometer-thick epitaxial BaTiO 3 single crystal thin films on SrRuO 3 bottom electrodes. Correlation between ferroelectric and electronic transport properties is established by the direct nanoscale visualization and control of polarization and tunneling current in BaTiO 3 films. The obtained results show a change in resistance by about two orders of magnitude upon polarization reversal on a lateral scale of 20 nm at room temperature.
Insights into Electron Transport in a Ferroelectric Tunnel Junction
Nanomaterials
The success of a ferroelectric tunnel junction (FTJ) depends on the asymmetry of electron tunneling as given by the tunneling electroresistance (TER) effect. This characteristic is mainly assessed considering three transport mechanisms: direct tunneling, thermionic emission, and Fowler-Nordheim tunneling. Here, by analyzing the effect of temperature on TER, we show that taking into account only these mechanisms may not be enough in order to fully characterize the performance of FTJ devices. We approach the electron tunneling in FTJ with the non-equilibrium Green function (NEGF) method, which is able to overcome the limitations affecting the three mechanisms mentioned above. We bring evidence that the performance of FTJs is also affected by temperature–in a non-trivial way–via resonance (Gamow-Siegert) states, which are present in the electron transmission probability and are usually situated above the barrier. Although the NEGF technique does not provide direct access to the wavefun...
Interplay of ferroelectricity and single electron tunneling
Physical Review B, 2014
We investigate the interplay of ferroelectricity and quantum electron transport at the nanoscale in the regime of Coulomb blockade. Ferroelectric polarization in this case is no longer the external parameter but should be self-consistently calculated along with electron hopping probabilities leading to new physical transport phenomena studying in this paper. These phenomena appear mostly due to effective screening of a grain electric field by ferroelectric environment rather than due to polarization dependent tunneling probabilities. At small bias voltages polarization can be switched by a single excess electron in the grain. In this case transport properties of SET exhibit the instability (memory effect).
Predictive modelling of ferroelectric tunnel junctions
npj Computational Materials, 2016
Ferroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction—a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructi...