Synapse formation and clustering of neuroligin-2 in the absence of GABAA receptors (original) (raw)

2008, Proceedings of the National Academy of Sciences

GABAergic synapses are crucial for brain function, but the mechanisms underlying inhibitory synaptogenesis are unclear. Here, we show that postnatal Purkinje cells (PCs) of GABAA␣1 knockout (KO) mice express transiently the ␣3 subunit, leading to the assembly of functional GABAA receptors and initial normal formation of inhibitory synapses, that are retained until adulthood. Subsequently, down-regulation of the ␣3 subunit causes a complete loss of GABAergic postsynaptic currents, resulting in a decreased rate of inhibitory synaptogenesis and formation of mismatched synapses between GABAergic axons and PC spines. Notably, the postsynaptic adhesion molecule neuroligin-2 (NL2) is correctly targeted to inhibitory synapses lacking GABAA receptors and the scaffold molecule gephyrin, but is absent from mismatched synapses, despite innervation by GABAergic axons. Our data indicate that GABAA receptors are dispensable for synapse formation and maintenance and for targeting NL2 to inhibitory synapses. However, GABAergic signaling appears to be crucial for activity-dependent regulation of synapse density during neuronal maturation.