Disruptive sexual selection on male nuptial coloration in an experimental hybrid population of cichlid fish (original) (raw)
Related papers
Female mating preferences can influence both intraspecific sexual selection and interspecific reproductive isolation, and have therefore been proposed to play a central role in speciation. Here, we investigate experimentally in the African cichlid fish Pundamilia nyererei if differences in male coloration between three para-allopatric populations (i.e. island populations with gene flow) of P. nyererei are predicted by differences in sexual selection by female mate choice between populations. Second, we investigate if female mating preferences are based on the same components of male coloration and go in the same direction when females choose among males of their own population, their own and other conspecific populations and a closely related para-allopatric sister-species, P. igneopinnis. Mate-choice experiments revealed that females of the three populations mated species-assortatively, that populations varied in their extent of population-assortative mating and that females chose among males of their own population based on different male colours. Females of different populations exerted directional intrapopulation sexual selection on different male colours, and these differences corresponded in two of the populations to the observed differences in male coloration between the populations. Our results suggest that differences in male coloration between populations of P. nyererei can be explained by divergent sexual selection and that population-assortative mating may directly result from intrapopulation sexual selection.
Current …, 2010
Sexual selection by female mating preference for male nuptial coloration has been suggested as a driving force in the rapid speciation of Lake Victoria cichlid fish. This process could have been facilitated or accelerated by genetic associations between female preference loci and male coloration loci. Preferences, as well as coloration, are heritable traits and are probably determined by more than one gene. However, little is known about potential genetic associations between these traits. In turbid water, we found a population that is variable in male nuptial coloration from blue to yellow to red. Males at the extreme ends of the phenotype distribution resemble a reproductively isolated species pair in clear water that has diverged into one species with blue-grey males and one species with bright red males. Females of the turbid water population vary in mating preference coinciding with the male phenotype distribution. For the current study, these females were mated to blue males. We measured the coloration of the sires and male offspring. Parents-offspring regression showed that the sires did not affect male offspring coloration, which confirms earlier findings that the blue species breeds true. In contrast, male offspring coloration was determined by the identity of the dams, which suggests that there is heritable variation in male color genes between females. However, we found that mating preferences of the dams were not correlated with male offspring coloration. Thus, there is no evidence for strong genetic linkage between mating preference and the preferred trait in this population [Current Zoology 56 (1): 57-64 2010].
Philosophical Transactions of the Royal Society B: Biological Sciences, 2008
The evolutionary consequences of interspecific hybridization, i.e. formation of a hybrid swarm, persistence or even divergence with reinforcement, depend on the balance between gene flow and selection against hybrids. If female mating preferences are open ended but sign reversed between species, they can theoretically be a source of such selection. Cichlid fish in African lakes have sustained high rates of speciation despite evidence for widespread hybridization, and sexual selection by female choice has been proposed as important in the origin and maintenance of species boundaries. However, it had never been tested whether hybridizing species have open-ended preference rules. Here we report the first experimental test using Pundamilia pundamilia, Pundamilia nyererei and their hybrids in three-way choice experiments. Hybrid males are phenotypically intermediate. Wild-caught females of both species have strong preferences for conspecific over heterospecific males. Their responses to F 1 hybrid males are intermediate, but more similar to responses to conspecifics in one species and more similar to responses to heterospecifics in the other. We suggest that their mate choice mechanism may predispose haplochromine cichlids to maintain and perhaps undergo phenotypic diversification despite hybridization, and that species differences in female preference functions may predict the potential for adaptive trait transfer between hybridizing species.
Preference polymorphism for coloration but no speciation in a population of Lake Victoria cichlids
Behavioral Ecology, 2007
Female mating preference based on male nuptial coloration has been suggested to be an important source of diversifying selection in the radiation of Lake Victoria cichlid fish. Initial variation in female preference is a prerequisite for diversifying selection; however, it is rarely studied in natural populations. In clear water areas of Lake Victoria, the sibling species Pundamilia pundamilia with blue males and Pundamilia nyererei with red males coexist, intermediate phenotypes are rare, and most females have species-assortative mating preferences. Here, we study a population of Pundamilia that inhabits turbid water where male coloration is variable from reddish to blue with most males intermediate. We investigated male phenotype distribution and female mating preferences. Male phenotype was unimodally distributed with a mode on intermediate color in 1 year and more blue-shifted in 2 other years. In mate choice experiments with females of the turbid water population and males from a clearer water population, we found females with a significant and consistent preference for P. pundamilia (blue) males, females with such preferences for P. nyererei (red) males, and many females without a preference. Hence, female mating preferences in this population could cause disruptive selection on male coloration that is probably constrained by the low signal transduction of the turbid water environment. We suggest that if environmental signal transduction was improved and the preference/color polymorphism was stabilized by negative frequency-dependent selection, divergent sexual selection might separate the 2 morphs into reproductively isolated species resembling the clear water species P. pundamilia and P. nyererei.
Proceedings of The Royal Society B: Biological Sciences, 2004
The haplochromine cichlids of Lake Victoria constitute a classical example of explosive speciation. Extensive intra-and interspecific variation in male nuptial coloration and female mating preferences, in the absence of postzygotic isolation between species, has inspired the hypothesis that sexual selection has been a driving force in the origin of this species flock. This hypothesis rests on the premise that the phenotypic traits that underlie behavioural reproductive isolation between sister species diverged under sexual selection within a species. We test this premise in a Lake Victoria cichlid, by using laboratory experiments and field observations. We report that a male colour trait, which has previously been shown to be important for behavioural reproductive isolation between this species and a close relative, is under directional sexual selection by female mate choice within this species. This is consistent with the hypothesis that female choice has driven the divergence in male coloration between the two species. We also find that male territoriality is vital for male reproductive success and that multiple mating by females is common.
Ecology Letters, 1999
We investigated a Lake Victoria cichlid with a complex colour polymorphism that apparently represents one original species and two incipient species, all of which are sympatric. In laboratory breeding experiments we observed sex ratio distortion in certain matings between original and incipient species. Mate choice experiments show that males of the incipient species exhibit mating preferences against the original species, and males and females of the original species exhibit strong mating preferences against the incipient species. Mating preferences might evolve by sex ratio selection to avoid matings with distorted progeny sex ratios. Phenotype frequencies in nature suggest that mating preferences translate into mating frequencies, thus restricting gene flow and exerting disruptive sexual selection between the original and incipient species. The incipient species do not differ in morphology or ecology from the original species, implying that colour polymorphism, associated with sex ratio distortion, can be an incipient stage in sympatric speciation, and that disruption of gene flow can precede ecological differentiation.
2013
Both inter-and intrasexual selection have been implicated in the origin and maintenance of species-rich taxa with diverse sexual traits. Simultaneous disruptive selection by female mate choice and male-male competition can, in theory, lead to speciation without geographical isolation if both act on the same male trait. Female mate choice can generate discontinuities in gene flow, while male-male competition can generate negative frequency-dependent selection stabilizing the male trait polymorphism. Speciation may be facilitated when mating preference and/or aggression bias are physically linked to the trait they operate on. We tested for genetic associations among female mating preference, male aggression bias and male coloration in the Lake Victoria cichlid Pundamilia. We crossed females from a phenotypically variable population with males from both extreme ends of the phenotype distribution in the same population (blue or red). Male offspring of a red sire were significantly redder than males of a blue sire, indicating that intra-population variation in male coloration is heritable. We tested mating preferences of female offspring and aggression biases of male offspring using binary choice tests. There was no evidence for associations at the family level between female mating preferences and coloration of sires, but dam identity had a significant effect on female mate preference. Sons of the red sire directed significantly more aggression to red than blue males, whereas sons of the blue sire did not show any bias. There was a positive correlation among individuals between male aggression bias and body coloration, possibly due to pleiotropy or physical linkage, which could facilitate the maintenance of color polymorphism [Current Zoology 59 (2): − , 2013].
The genetic architecture of mate preferences is likely to affect significant evolutionary processes, including speciation and hybridisation. Here, we investigate laboratory hybrids between a pair of sympatric Lake Victoria cichlid fish species that appear to have recently evolved from a hybrid population between similar predecessor species. The species demonstrate strong assortative mating in the laboratory, associated with divergent male breeding colouration (red dorsum vs. blue). We show in a common garden experiment, using DNA-based paternity testing, that the strong female mate preferences among males of the two species are fully recovered in a large fraction of their F2 hybrid generation. Individual hybrid females often demonstrated consistent preferences in multiple mate choice trials (more than or equal to five) across a year or more. This result suggests that female mate preference is influenced by relatively few major genes or genomic regions. These preferences were not changed by experience of a successful spawning event with a male of the non-preferred species in a no-choice single-male trial. We found no evidence for imprinting in the F2 hybrids, although the F1 hybrid females may have been imprinted on their mothers. We discuss this nearly Mendelian inheritance of consistent innate mate preferences in the context of speciation theory.