Dissemination of Escherichia coli with CTX-M type ESBL between humans and yellow-legged gulls in the south of France (original) (raw)

Carriage of CTX-M type extended spectrum β-lactamases (ESBLs) in gulls across Europe

Acta veterinaria Scandinavica, 2015

Extended spectrum β-lactamases (ESBLs), a group of enzymes conferring resistance to third generation cephalosporins have rapidly increased in Enterobacteriacae and pose a major challenge to human health care. Resistant isolates are common in domestic animals and clinical settings, but prevalence and genotype distribution varies on a geographical scale. Although ESBL genes are frequently detected in bacteria isolated from wildlife samples, ESBL dissemination of resistant bacteria to the environment is largely unknown. To address this, we used three closely related gull species as a model system and collected more than 3000 faecal samples during breeding times in nine European countries. Samples were screened for ESBL-producing bacteria, which were characterized to the level of ESBL genotype groups (SHV, TEM), or specific genotypes (CTX-M). ESBL-producing bacteria were frequently detected in gulls (906 of 3158 samples, 28.7 %), with significant variation in prevalence rates between co...

Antibiotic resistance patterns in Escherichia coli from gulls in nine European countries

Infection ecology & epidemiology, 2014

Background: The prevalence of antibiotic resistant faecal indicator bacteria from humans and food production animals has increased over the last decades. In Europe, resistance levels in Escherichia coli from these sources show a south-to-north gradient, with more widespread resistance in the Mediterranean region compared to northern Europe. Recent studies show that resistance levels can be high also in wildlife, but it is unknown to what extent resistance levels in nature conform to the patterns observed in human-associated bacteria. Methods: To test this, we collected 3,158 faecal samples from breeding gulls (Larus sp.) from nine European countries and tested 2,210 randomly isolated E. coli for resistance against 10 antibiotics commonly used in human and veterinary medicine. Results: Overall, 31.5% of the gull E. coli isolates were resistant to ]1 antibiotic, but with considerable variation between countries: highest levels of isolates resistant to ]1 antibiotic were observed in Spain (61.2%) and lowest levels in Denmark (8.3%). For each tested antibiotic, the Iberian countries were either the countries with the highest levels or in the upper range in between-country comparisons, while northern countries generally had a lower proportion of resistant E. coli isolates, thereby resembling the gradient of resistance seen in human and food animal sources. Conclusion: We propose that gulls may serve as a sentinel of environmental levels of antibiotic resistant E. coli to complement studies of human-associated microbiota.

Investigation of urban birds as source of β-lactamase-producing Gram-negative bacteria in Marseille city, France

Acta Veterinaria Scandinavica, 2019

Background: We investigate here the presence of multidrug-resistant bacteria isolated from stool samples of yellowlegged gulls and chickens (n = 136) in urban parks and beaches of Marseille, France. Bacterial isolation was performed on selective media, including MacConkey agar with ceftriaxone and LBJMR medium. Antibiotic resistance genes, including extended-spectrum β-lactamases (ESBL) (i.e. bla CTX-M , bla TEM and bla SHV), carbapenemases (bla KPC , bla VIM , bla NDM , bla OXA-23 , bla OXA-24 , bla OXA-48 and bla OXA-58) and colistin resistance genes (mcr-1 to mcr-5) were screened by realtime PCR and standard PCR and sequenced when found. Results: Of the 136 stools samples collected, seven ESBL-producing Gram-negative bacteria (BGN) and 12 colistinresistant Enterobacteriaceae were isolated. Among them, five ESBL-producing Escherichia coli and eight colistinresistant Hafnia alvei strains were identified. Four bla TEM-1 genes were detected in yellow-legged gulls and chickens. Three CTX-M-15 genes were detected in yellow-legged gulls and pigeons, and one CTX-M-1 in a yellow-legged gull. No mcr-1 to mcr-5 gene were detected in colistin-resistant isolates. Genotyping of E. coli strains revealed four different sequence types already described in humans and animals and one new sequence type. Conclusions: Urban birds, which are believed to have no contact with antibiotics appear as potential source of ESBL genes. Our findings highlight the important role of urban birds in the proliferation of multidrug-resistant bacteria and also the possible zoonotic transmission of such bacteria from wild birds to humans.

Antibiotic-Resistant Escherichia coli Bacteria, Including Strains with Genes Encoding the Extended-Spectrum Beta-Lactamase and QnrS, in Waterbirds on the Baltic Sea Coast of Poland

Applied and Environmental Microbiology, 2010

Individual cloacal swabs of mallards ( Anas platyrhynchos ) and of herring gulls ( Larus argentatus ), as well as samples of waterbird feces obtained in 2008 and 2009, were cultivated for Escherichia coli . Isolates of E. coli were tested for susceptibilities to 12 antimicrobial agents by the disk diffusion method. Moreover, the samples were subcultivated on MacConkey agar (MCA) containing cefotaxime (2 mg liter −1 ) to detect E. coli with extended-spectrum beta-lactamase (ESBL) and subsequently on MCA supplemented with ciprofloxacin (0.05 mg liter −1 ) and MCA with nalidixic acid (20 mg liter −1 ) to isolate fluoroquinolone-resistant E. coli . PCR was used to detect specific antibiotic resistance genes. We found 9 E. coli isolates producing ESBL with bla genes: bla CTX-M-1 (6 isolates), bla CTX-M-9 plus bla TEM-1b (1 isolate), bla CTX-M-15 plus bla OXA-1 (1 isolate), and bla SHV-12 (1 isolate). In the isolate with bla CTX-M-15 , the gene aac(6)-Ib-cr was also detected. The bla gene...

Detection of CTX-M-15 harboring Escherichia coli isolated from wild birds in Tunisia

BMC microbiology, 2018

The spreading of antibiotic resistant bacteria is becoming nowadays an alarming threat to human and animal health. There is increasing evidence showing that wild birds could significantly contribute to the transmission and spreading of drug-resistant bacteria. However, data for antimicrobial resistance in wild birds remain scarce, especially throughout Africa. The aims of this investigation were to analyze the prevalence of ESBL-producing E. coli in faecal samples of wild birds in Tunisia and to characterize the recovered isolates. One hundred and eleven samples were inoculated on MacConkey agar plates supplemented with cefotaxime (2 μg/ml). ESBL-producing E. coli isolates were detected in 12 of 111 faecal samples (10.81%) and one isolate per sample was further characterized. β-lactamase detected genes were as follows: bla (8 isolates), bla + bla (4 isolates). The ISEcp1 and orf477 sequences were found respectively in the regions upstream and downstream of all bla genes. Seven diffe...

Characterization and Comparison of Extended-Spectrum β-Lactamase (ESBL) Resistance Genotypes and Population Structure of Escherichia coli Isolated from Franklin's Gulls (Leucophaeus pipixcan) and Humans in Chile

PLoS ONE, 2013

We investigated the general level of antibiotic resistance with further analysis of extended-spectrum beta-lactamase (ESBL) prevalence, as well as the population structure of E. coli in fecal flora of humans and Franklin's gulls (Leucophaeus pipixcan) in central parts of Chile. We found a surprisingly high carriage rate of ESBL-producing E. coli among the gulls 112/372 (30.1%) as compared to the human population 6/49 (12.2%.) Several of the E. coli sequence types (STs) identified in birds have previously been reported as Multi Drug Resistant (MDR) human pathogens including the ability to produce ESBLs. This means that not only commensal flora is shared between birds and humans but also STs with pathogenic potential. Given the migratory behavior of Franklin's gulls, they and other migratory species, may be a part of ESBL dissemination in the environment and over great geographic distances. Apart from keeping the antibiotic use low, breaking the transmission chains between the environment and humans must be a priority to hinder the dissemination of resistance. Citation: Hernandez J, Johansson A, Stedt J, Bengtsson S, Porczak A, et al. (2013) Characterization and Comparison of Extended-Spectrum b-Lactamase (ESBL) Resistance Genotypes and Population Structure of Escherichia coli Isolated from Franklin's Gulls (Leucophaeus pipixcan) and Humans in Chile. PLoS ONE 8(9): e76150.

ESBL-Producing Escherichia coli Carrying CTX-M Genes Circulating among Livestock, Dogs, and Wild Mammals in Small-Scale Farms of Central Chile

Antibiotics, 2021

Antibiotic-resistant bacteria of critical importance for global health such as extended-spectrum beta-lactamases-producing (ESBL)-Escherichia coli have been detected in livestock, dogs, and wildlife worldwide. However, the dynamics of ESBL-E. coli between these animals remains poorly understood, particularly in small-scale farms of low and middle-income countries where contact between species can be frequent. We compared the prevalence of fecal carriage of ESBL-E. coli among 332 livestock (207 cows, 15 pigs, 60 horses, 40 sheep, 6 goats, 4 chickens), 82 dogs, and wildlife including 131 European rabbits, 30 rodents, and 12 Andean foxes sharing territory in peri-urban localities of central Chile. The prevalence was lower in livestock (3.0%) and wildlife (0.5%) compared to dogs (24%). Among 47 ESBL-E. coli isolates recovered, CTX-M-group 1 was the main ESBL genotype identified, followed by CTX-M-groups 2, 9, 8, and 25. ERIC-PCR showed no cluster of E. coli clones by either host species...