Unmasking Activation of the Zygotic Genome Using Chromosomal Deletions in the Drosophila Embryo (original) (raw)
During the maternal-to-zygotic transition, a developing embryo integrates post-transcriptional regulation of maternal mRNAs with transcriptional activation of its own genome. By combining chromosomal ablation in Drosophila with microarray analysis, we characterized the basis of this integration. We show that the expression profile for at least one third of zygotically active genes is coupled to the concomitant degradation of the corresponding maternal mRNAs. The embryo uses transcription and degradation to generate localized patterns of expression, and zygotic transcription to degrade distinct classes of maternal transcripts. Although degradation does not appear to involve a simple regulatory code, the activation of the zygotic genome starts from intronless genes sharing a common cis-element. This cis-element interacts with a single protein, the Bicoid stability factor, and acts as a potent enhancer capable of timing the activity of an exogenous transactivator. We propose that this regulatory mode links morphogen gradients with temporal regulation during the maternal-to-zygotic transition. Citation: De Renzis S, Elemento O, Tavazoie S, Wieschaus EF (2007) Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo. PLoS Biol 5(5): e117.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact