Dialogue behavior management in conversational recommender systems (original) (raw)

Dialogue Behavior Management in Conversational Recommender Systems by

2014

This thesis examines recommendation dialogue, in the context of dialogue strategy design for conversational recommender systems. The purpose of a recommender system is to produce personalized recommendations of potentially useful items from a large space of possible options. In a conversational recommender system, this task is approached by utilizing natural language recommendation dialogue for detecting user preferences, as well as for providing recommendations. The fundamental idea of a conversational recommender system is that it relies on dialogue sessions to detect, continuously update, and utilize the user’s preferences in order to predict potential interest in domain items modeled in a system. Designing the dialogue strategy management is thus one of the most important tasks for such systems. Based on empirical studies as well as design and implementation of conversational recommender systems, a behavior-based dialogue model called bcorn is presented. bcorn is based on three ...

A Conversational Movie Recommender System

2020

The purpose of a Conversational Recommender System is to help the users achieve their recommendation specific goals using a multi-turn dialogue. In recent years, numerous studies are conducted on improving the quality attributes of a conversational recommender system. Multiple conversational movie recommender systems are proposed. However, there is a need for a conversational system for a movie recommendation, which can be used for research purposes. The main goal of this thesis is to create Jarvis, an open-source, rule-based conversational movie recommender system focusing on understanding the users’ goals and adapting to their changing requirements. In order to understand the users’ goals, a database is created, which contains the attributes with higher coverage of possible users’ goals. A multi-model chat interface is designed for Jarvis. This interface introduces the components for better user interaction and providing users a guide during the conversation. The success of a conv...

Modeling a dialogue strategy for personalized movie recommendations

… of the Beyond Personalization 2005 workshop …, 2005

This paper addresses conversational interaction in useradaptive recommender systems. By collecting and analyzing a movie recommendation dialogue corpus, two initiative types that need to be accommodated in a conversational recommender dialogue ...

A Domain-independent Framework for building Conversational Recommender Systems

2018

Conversational Recommender Systems (CoRSs) implement a paradigm where users can interact with the system for defining their preferences and discovering items that best fit their needs. A CoRS can be straightforwardly implemented as a chatbot. Chatbots are becoming more and more popular for several applications like customer care, health care, medical diagnoses. In the most complex form, the implementation of a chatbot is a challenging task since it requires knowledge about natural language processing, human-computer interaction, and so on. In this paper, we propose a general framework for making easy the generation of conversational recommender systems. The framework, based on a contentbased recommendation algorithm, is independent from the domain. Indeed, it allows to build a conversational recommender system with different interaction modes (natural language, buttons, hybrid) for any domain. The framework has been evaluated on two state-of-the-art datasets with the aim of identify...