Segmentation and Somitogenesis Derived from Phase Dynamics in Growing Oscillatory Media (original) (raw)
Related papers
2020
The clock and wavefront paradigm is arguably the most widely accepted model for explaining the embryonic process of somitogenesis. According to this model, somitogenesis is based upon the interaction between a genetic oscillator, known as segmentation clock, and a differentiation wavefront, which provides the positional information indicating where each pair of somites is formed. Shortly after the clock and wavefront paradigm was introduced, Meinhardt presented a conceptually different mathematical model for morphogenesis in general, and somitogenesis in particular. Recently, Cotterell et al. rediscovered an equivalent model by systematically enumerating and studying small networks performing segmentation. Cotterell et al. called it a progressive oscillatory reaction-diffusion (PORD) model. In the Meinhardt-PORD model, somitogenesis is driven by short-range interactions and the posterior movement of the front is a local, emergent phenomenon, which is not controlled by global positio...
Chemical waves in open flows of active media: Their relevance to axial segmentation in biology
Faraday Discussions, 2002
The boundary forcing of open Ñows of active media can lead to a variety of spatiotemporal structures, depending on the local kinetics of the medium and on the characteristics of the forcing. Here, we demonstrate that regardless of the local kinetics, the combination of Ñow and boundary forcing is a powerful method for replacing intrinsic modes with extrinsic ones. This entrainment of dynamics has important implications for biological morphogenesis. During early embryonic development it is frequently observed that stripes of gene expression and segments arise one after the other along a growth-axis. We show that axial growth can be viewed as an open Ñow of cells away from a growth zone. Based on this realisation, we demonstrate using three generic reactionÈdi †usionÈadvection schemes how a space-periodic structure is induced, one "" segment ÏÏ at a time along the growth/Ñow axis, by a segmental clock that is synchronised within the growth zone. The schemes are investigated in the context of an abrupt and a gradual change in the properties of the segmental clock. Experimental observations provide evidence that the latter is involved in the early development of many vertebrates.
The International Journal of Developmental Biology, 2009
In this article we will discuss the integration of developmental patterning mechanisms with waves of competency that control the ability of a homogeneous field of cells to react to pattern forming cues and generate spatially heterogeneous patterns. We base our discussion around two well known patterning events that take place in the early embryo: somitogenesis and feather bud formation. We outline mathematical models to describe each patterning mechanism, present the results of numerical simulations and discuss the validity of each model in relation to our example patterning processes.
Traveling wave formation in vertebrate segmentation
Journal of Theoretical Biology, 2009
In vertebrate somitogenesis, ''segmentation clock'' genes (such as her in zebrafish, hairy in chick, and hes in mouse) show oscillation, synchronized over nearby cells through cell-cell interaction. The locations of high gene expression appear with regular intervals and move like a wave from posterior to anterior with the speed slowing down toward the anterior end. We analyze traveling wave pattern of her gene expression when there is an anterior-posterior gradient of one of the reaction rates in the gene-protein kinetics. We adopt a model which includes the kinetics of mRNA and proteins of her gene in each cell and cell-cell interaction by Delta-Notch system explicitly. We show that the observed spatio-temporal pattern can be explained if mRNA degradation, protein translation, protein transportation to nucleus occurs faster, or mRNA transcription, Delta protein synthesis occurs slower in posterior than in anterior regions. All of these gradients are those that produce longer periodicity of oscillation of clock gene expression in the anterior than in the posterior. Based on this result, we derive a mathematical formula for how the peak of gene expression moves along the pre-somitic mesoderm.
Development, 2012
The segmentation clock is an oscillating genetic network thought to govern the rhythmic and sequential subdivision of the elongating body axis of the vertebrate embryo into somites: the precursors of the segmented vertebral column. Understanding how the rhythmic signal arises, how it achieves precision and how it patterns the embryo remain challenging issues. Recent work has provided evidence of how the period of the segmentation clock is regulated and how this affects the anatomy of the embryo. The ongoing development of realtime clock reporters and mathematical models promise novel insight into the dynamic behavior of the clock. for critical reading of the manuscript and/or discussion. We sincerely apologize to all whose work could not be cited due to space constraints.
PloS one, 2008
Background: Recent discoveries in the field of somitogenesis have confirmed, for the most part, the feasibility of the clock and wavefront model. There are good candidates for both the clock (various genes expressed cyclically in the tail bud of vertebrate embryos have been discovered) and the wavefront (there are at least three different substances, whose expression levels vary along the presomitic mesoderm [PSM], that have important effects on the formation of somites). Nevertheless, the mechanisms through which the wavefront interacts with the clock to arrest the oscillations and induce somite formation have not yet been fully elucidated.
Continuum theory of gene expression waves during vertebrate segmentation
New Journal of Physics, 2015
The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time.
Segmentation clock dynamics is strongly synchronized in the forming somite
Developmental Biology, 2019
During vertebrate somitogenesis an inherent segmentation clock coordinates the spatiotemporal signaling to generate segmented structures that pattern the body axis. Using our experimental and quantitative approach, we study the cell movements and the genetic oscillations of her1 expression level at single-cell resolution simultaneously and scale up to the entire pre-somitic mesoderm (PSM) tissue. From the experimentally determined phases of PSM cellular oscillators, we deduced an in vivo frequency profile gradient along the anterior-posterior PSM axis and inferred precise mathematical relations between spatial cell-level period and tissue